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Following earlier work [S.L. Friedman and J.M. Rodenburg, J. Phys. D 25 (1992) 147] which has shown, using light optics 
in one dimension, that a poor lens of limited aperture (such as that encountered in both electron and X-ray microscopy) 
need not limit spatial resolution, we present here experimental proof that the method can be straightforwardly extended to 
two-dimensional images. We employ a scanning optical microscope in the configuration of the scanning transmission 
electron microscope (STEM) to solve for the specimen structure at "super-resolution" for (1) a two-dimensional magnitude 
specimen, (2) an extended two-dimensional magnitude specimen and (3) a pure strong-phase specimen. 

I. Introduction 

It has long been known that the microdiffrac- 
tion plane of a scanning transmission electron 
microscope (STEM) is a complex mixture of 
diffraction [1], shadow-image [2], and holographic 
[3,4] information. Furthermore,  when any point in 
the microdiffraction plane is collected as a func- 
tion of probe position, it contains all the conven- 
tional bright and dark-field image information, 
depending on where the chosen detection point 
lies relative to the optic axis. Bates and Roden- 
burg [5] have shown that (at least when working 
within the projection approximation) the instru- 
ment and specimen contributions can be sepa- 
rated by a simple deconvolution using a Wigner 
distribution if all of this data is collected in one 
experiment. Not only does this remove the influ- 
ences of any aberrations or defocus in the lens, it 
also retrieves the phase of the wavefield on the 
exit surface of the specimen (at least within the 
projection approximation) and therefore offers 
the opportunity of providing a super-resolution 
estimate of the specimen in complex amplitude, 
without being limited to the weak-phase approxi- 

marion, and without requiring a stable holo- 
graphic reference wave. The phase-retrieval pro- 
cess is most appropriately performed in the 
diffraction plane [6], for it then also allows the 
reconstruction to exceed the conventional "infor- 
mation limit" of the microscope, which in elec- 
tron microscopy is usually dominated by instru- 
ment instability, chromatic spread and the inco- 
herence terms which arise from the finite source 
and detector sizes (as opposed to a physical ob- 
jective aperture). 

Qualitatively, we may think of the method in 
terms of reciprocity [7] as follows. Any one image 
recorded with tilted illumination in a conven- 
tional transmission electron microscope will have 
a certain range of spatial frequencies present, this 
range being limited by the aperture or envelope 
function lying in the back focal plane of the 
objective lens. Different illumination tilt angles 
will pass different regions of the diffraction pat- 
tern through the central, good-quality part of the 
transfer function. Of course, no single image will 
give an unambiguous estimate of the phase of the 
wavefield because of the usual limitations of the 
transfer function. However, by using the entire 
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data set (all images as a function of the illumina- 
tion tilt angles), the relative phase between each 
pair of points in the diffraction pattern can be 
inferred from the absolute position (and the 
changes in their position as a function of tilt) of 
their corresponding interference fringes in the 
image plane. Having accounted for the phase of 
the transfer function via the deconvolution, the 
process can thus provide an estimate of the rela- 
tive phase between any two points in reciprocal 
space which are separated by less than the stable 
width of the objective aperture function. Conse- 
quently, it is possible to build up an aperture, in 
theory of unlimited size, in a way which is closely 
akin to aperture-synthesis in radio astronomy. 
We refer to the method as "Wigner phase-re- 
trieval microscopy" (WPM) to emphasise both 
the phase-sensitive nature of the reconstruction 
and the fact that the crucial deconvolution occurs 
in a Wigner distribution, which is a mixture of 
both real space and reciprocal space coordinates. 
In practice, because such a closely sampled set of 
illumination conditions is difficult to obtain in the 
conventional transmission microscope, we formu- 
late the theory and perform the experiments in 
the STEM mode, where such data can simulta- 
neously be recorded for each image pixel (de- 
fined as the position of the focused-probe 
crossover). 

WPM is described in section 2, and the two-di- 
mensional (2D) optical STEM analogue used to 
collect WPM data for subsequent processing is 
described in section 3. In section 4, we present 
results showing the reconstruction of a 2D finite- 
sized magnitude specimen. However, any actual 
STEM specimen is typically many orders of mag- 
nitude larger than the region of interest. In sec- 
tion 5, we show that it is theoretically possible to 
reconstruct the specimen function over a small 
region of a large specimen, by appropriately win- 
dowing the microdiffraction data that is recorded 
as the probe is scanned over that region. Results 
are then presented of the application of this 
method to the reconstruction of an extended ob- 
ject. Furthermore, one is often interested in 
phase-only specimens. This poses  no problem 
theoretically, since WPM is capable of recovering 
the complex amplitude of the specimen function. 

In section 6, we show that it is indeed possible to 
reconstruct a phase-only specimen function from 
measured microdiffraction data. Finally, conclu- 
sions are drawn in section 7. 

2. Theory 

It is first necessary to describe WPM as ap- 
plied in STEM [5,6]. The complex specimen and 
probe functions are denoted by t0(r) and a(r), 
respectively (where r is a coordinate in 2D real 
space), and the position of the probe with respect 
to the specimen by p. The reciprocal space coor- 
dinates corresponding to r and p are denoted by 
r '  and p' ,  respectively, and the Fourier trans- 
forms of to(r) and a(r) by ~ ( r ' )  and A(r'). Note 
that elsewhere [5] we referred to the probe func- 
tion as p(r) ;  however, we adopt a(r) here to 
emphasise its Fourier relationship to the objec- 
tive aperture function A(r'). The complex ampli- 
tude M(r', p) in the microdiffraction plane is 
simply 

M(r', p) =FT~{a(r-p)$(r)} 

= j a ( r - p ) 6 ( r )  e x p ( i 2 7 r r ' r ' )  d r ,  

(1) 

where FTr{ } denotes a Fourier transformation 
with respect to the r coordinate only. By the 
convolution theorem, M(r', O) can also be ex- 
pressed as 

M(r', p) = FT~{a(r-p)} ®r' FT.{to(r)} 

= f A ( b ' ) q ~ ( r '  - b ' )  

× exp(i27rp • b ' )  db ' ,  (2) 

where ® denotes convolution, the subscript indi- 
cating the variable(s) over which the convolution 
is performed. 

In practice, only the intensity in the micro- 
diffraction plane (i.e. I M(r', p)l 2) can be mea- 
sured, which can be expressed in various different 



B.C. McCallum, J.M. Rodenburg / 2D demonstration of Wigner phase-retriecal microscopy 373 

forms. From eq. (1), I M(r ' ,  p)12 can be ex- 
pressed in terms of real space quantities as 

IM(r' ,  p) l 2 

=M(r ' ,  p )M*(r ' ,  p) 

= f fa(b-o)~O(b)a*(c-v)O*(c)  

Xexp[ i2r r r ' - (b  - c ) ]  db dc, (3) 

where * denotes complex conjugation. Alterna- 
tively, I M(r', p) l 2 can be expressed in terms of 
reciprocal space quantities from eq. (2) as 

Im(r ' ,  p)12 

= f f A ( b ' ) q ' ( r ' - b ' ) A * ( c ' ) ~ * ( r ' - c ' )  

Xexp[i27rp- ( b ' -  c ' )]  db'  dc ' .  (4) 

This expression is in the form derived by Cowley 
[1], except that the probe position p has been 
explicitly included, and in this form can be thought 
of as a phase ramp across the aperture function. 
Yet another possibility is to express I M(r', p)[ z 
in terms of both real and reciprocal space quanti- 
ties, by combining eqs. (1) and (2) to give 

IM(r' ,  p)12 

=ffA(b') 
× exp(iZTrp "b ' )~(r '  - b')a*(c -p)@*(c)  

×exp( - i 2~ -c  . r ' )  db'  dc 

= ffa*(c-o)A(b') e x p [ - i Z T r ( c - p ) ' b ' ]  

X ~ b * ( c ) ~ ( r ' - b ' )  

X e x p [ i 2 ~ c - ( b ' - r ' ) ]  db'  dc 

= [ a * ( - p ) A ( r ' )  

×exp(i2~rp. r ' ) ]  ®r',p [ ~ b * ( p ) ~ ( r ' )  

× exp( - iZr rp  • r ' ) ] .  (5) 

The significance of eq. (5) is that I M(r', p) l 2 is 
now separated into two parts, one depending only 
on the probe function and the other depending 
only on the specimen function. It is thus possible 
in principle to remove the effect of the objective 

lens by deconvolving a * ( - p ' ) A ( r ' )  exp(i2~'p, r ' )  
from I M(r', p) l 2. However, the division implicit 
in any such deconvolution procedure must be 
performed in (r, p ' )  space, for it is in this space 
in which we have a product of two functions, one 
depending on the specimen and the other on the 
probe. Specifically, Fourier transformation of 
I M(r', p)l 2 with respect to both r '  and p yields 

a quantity we call H(r, p'), given by 

H(r,p')=FT r,o{lM(r',p) 12} 
=xo(r, -O')xAr, O'), (6) 

where x,(r, -p ' )  and X~,(r, p') are defined by 

p') = f q*( c)q( c + r) exp(i27rc "p') dc. Xq( r, 

(7) 

Note that Xq(r, p') has the form of a Wigner 
distribution [8]. Given a(r), xa(r, -p ' )  can be 
straightforwardly evaluated by eq. (7) and then 
removed from H(r, p')  by a suitable deconvolu- 
tion method (such as a Wiener filter [9]), giving 
x~(r, p')  (where is used to denote an estimate 
of a quantity). 

From eq. (6), it follows that X~,(r, p') can only 
be determined in regions of (r, p ' )  space where 
xa(r, -p ' )  has a significant value. If a(r) is 
formed from an objective aperture of diameter 
2a,  then it can be seen from eq. (7) that x~(r, 
- p ' ) =  0 for IIP'II > 2c~. We shall refer to the 
circle II P' II = 2a  as "the p'  cutoff". In this case, 
x,(r, p')  can then only be estimated for values of 
p' lying within the p' cutoff. To see how the 
specimen function may be recovered from x~(r, 
p'), consider the quantity D(r', p'), as defined by 

D(r ' ,  p') = zr ,{x,( r ,  p')} 

= (8) 

An estimate of ~ ( p ' )  (note that ~ ( r ' )  and ~ ( p ' )  
are used interchangeably, since r '  and p' are 
both reciprocal space variables) can thus be ob- 
tained from D(r', p') by 

= D  0 ) ,  (9) 
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Fig. 1. The p'  plane in which ~ (p ' )  is reconstructed, indicat- 
ing how ~(p ' )  can be obtained outside the p'  cutoff. 

from which an estimate of the specimen function 
~ O )  can be obtained by inverse Fourier transfor- 
mation. Since D(r', O') = 0 beyond the O' cutoff, 
eq. (9) can only recover qt(O') up to the O' cutoff. 

A 

It should be pointed out that O(O), as well as 
being recovered in complex amplitude, is recov- 
ered to twice the resolution of the bright-field 
image. This follows since the bright-field image is 
I M(0, p) l 2 = IFW_p,{gt(p')A(p')} I 2, and so only 
contains information about q,(p) for II P' L < a. 

However, the range of p '  over which qt(p,) is 
recovered can be extended by further considera- 
tion of eq. (8). By setting r '  =/3, where/3 is some 
value for which ~(/3) is already known, it can be 
seen that q4p ' )  may be recovered over the region 

II o ' - / 3  II < ~. By doing so for various /3, qt(p,) 
can in principle be recovered to arbitrarily large 
II p'[[. This is now illustrated in detail with the aid 
of fig. 1, which depicts the plane in which gt(p,) 
exists. Data from the r' = 0 plane of D(r', p') is 
first used to obtain qt(p,) within the circle of 
radius a labelled C o. Next, the r ' = / 3 p l a n e  of 
D(r', p'), together with the value of gt(/3) just 
computed, can then be used to obtain qt(p,) 

within the circle of radius a centred at p ' = / 3 ,  
labelled C 0. Similarly, the r ' = y  plane of AD(r', 
p ' )  and gt(y) can then be used to obtain qt(p,) 
within the circle C~, and so on. In practice, there 
will of course always be some value of Iio'11, 
which will depend on the accuracy to which D(r', 
p ' )  has been estimated, beyond which qt(p,) will 
cease to have meaningful value. Note, however, 
that due to the redundancy of D(r', p'), there is 
great scope for improving qt(p,) by least-squares- 
type techniques. Consider the value of qt(p,) at 
the point p ' =  E on fig. 1. Two estimates of this 
value can be obtained, one from each of the 
r ' = / 3  and r ' =  ~ planes of D(r', p'), but there 
are of course many other possible routes by which 
values of qt(~) may be estimated. 

3. Experimental apparatus 

The optical STEM analogue used to obtain the 
microdiffraction data-sets, shown schematically in 
fig. 2, is now described. A spatially filtered an d  
collimated H e - N e  laser beam (A = 640 nm) is 
directed onto an aperture of adjustable diameter, 
followed by a lens ( f =  310 ram), which forms a 
crossover (i.e. probe) at the specimen plane. The 
specimen is mounted on the scanned stage of a 
novel scanning optical microscope (interfaced to 
a Sun SPARC 4 computer), to allow scanning of 
the specimen with respect to the fixed probe. A 
CCD camera (EEV P43610, 570 lines × 350 pix- 
els, positioned 125 mm from the specimen plane) 
records the microdiffraction patterns, which are 
digitised to 8 bits by an Imaging Technology 
Series 151 image processor. 

In the examples presented in this paper, the 
specimen is scanned over a square grid (compris- 
ing either 32 × 32 or 50 x 50 positions), the grid 

I t L >  
I V 

laser collimator aperture lens specimen camera 

Fig. 2. The optical analogue of a STEM, from which microdiffraction data-sets are obtained. 
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Fig. 3. Reconstruction of a 2D specimen: (a) square-root of bright-field image for 8 mm aperture, (b) bright-field image for 2 mm 
aperture, (c) magnitude and (d) phase of ~(p) reconstructed to the p '  cutoff, (e) magnitude and (f) phase of ~(p) reconstructed to 

twice the p '  cutoff. 
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spacing being 12.5 /xm in each direction. Each 
microdiffraction pattern is reduced to 32 × 32 
samples, spaced by 0.2 mm (equivalent to a recip- 
rocal space sampling of 2.5 x 103 m- l ) .  

4. Reconstruction of a 2D amplitude specimen 

The first example simply serves to confirm that 
WPM can be successfully applied to 2D mea- 
sured microdiffraction data. A suitable specimen 
was formed by placing a 200/zm electron micro- 
scope aperture upon a copper grid specimen 
mount, both being glued to a glass microscope 
slide. Initially, a small probe was formed with the 
adjustable objective aperture set to 8 mm diame- 
ter, giving a probe of 13 mrad half-angle. With 
this probe, a bright-field image (i.e. ] M(0, P)] 2) 
was collected, the square-root of which is shown 
in fig. 3a. We choose to display [M(0, p) l so as 
to allow camparison with the magnitude of the 
reconstructed image. Note that all magnitude im- 
ages are displayed on a linear grey-scale ranging 
from 0 to a normalised value of 1. Next, a com- 
plete microdiffraction data-set (i.e. I M(r', 0) 12) 
was collected using a wider probe (2 mm diame- 
ter objective aperture). The bright-field image 
obtained from this data-set is shown in fig. 3b; 
note that the individual parts of the specimen are 
no longer resolved. 

WPM is applied to this latter data-set, in which 
Xa( r, -0 ')  is formed by assuming an A(r') which 
is unity within a 2 mm diameter circle. The mag- 
nitude and phase of ~(O), obtained by recon- 
structing to the P' cutoff, are shown in figs. 3c 
and 3d (displayed on a linear grey-scale ranging 
from -Tr  to rr), respectively. The resolution of 
~ O )  is significantly higher than that of the 
bright-field image, as is to be expected for the 
reason given in section 2. Since the specimen is 
pure amplitude, we should expect the phase of 
A 

~(p)  to be constant at all values of 0 for which 
14~(o) I is significant, as is the case in fig. 3d (note 

that the phase of ~0(p) is meaningless at values of 
P for which 17(O)1 is small; i.e. in regions of 
darkness in fig. 3c we expect random phase in fig. 
3d). 

The magnitude and phase of the reconstruc- 
tion to twice the P'  cutoff (i.e. up to II 0 '  II = 4a)  is 
shown in figs. 3e and 3f. For this case, the recon- 
struction is performed as follows. ~ ( P ' )  is first 
reconstructed up to the P' cutoff. Next, /3 is set 
to the value of P' at which T ( P ' )  has the largest 
value, giving an estimate of qr(p ' )  (call it ~ ( 0 ' ) )  
over the region II o' - / 3  II < 2a. Any pixel of ~ ( 0 ' )  
in this region whose value has not already been 
set is then set to the value of the corresponding 
pixel in ~(O')-  This process is repeated for the 
next largest value in qt(p'), until all pixels of 

1//(O') in the region II o' II < 4a  have been set. 

5. Reconstruction of an extended amplitude spec- 
imen 

In any real experiment, it is only possible to 
measure microdiffraction data from a limited 
number of probe positions. Thus if WPM is to be 
applicable to actual STEM data, it must be capa- 
ble of operating on data measured from a limited 
region of the specimen. We now show that this is 
indeed possible. 

Consider a microdiffraction data-set in which 
every microdiffraction pattern is set to zero for 
values of P outside some region of p-space. This 
can be achieved by multiplying the measured 
microdiffraction data-set by a windowing function 
w(p) (which should fall smoothly to zero at its 
edges), giving rise to a "reduced microdiffraction 
data-set" R(r ' ,  P) as 

R(r', p) = w(p) lM(r', p)  l 2 (10) 

If w(p) satisfies 

w(p) = v ( - p ) v * ( - p ) ,  (11) 

then R(r', p) can be written (using eq. (3)) as 

R(r', P) 

= 

exp[i2 -(b-c)'r'] db dc. 
(12) 
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If the value of w(r) does not vary considerably 
over the region in which a(r) has a significant 
value, then 

p) 

= f f a ( b ) v ( b  -p )a* (c )v* (c  - p )  

× ~ b * ( c - p )  e x p [ i 2 7 r ( b - c ) ' r ' ]  db dc. 

(13) 

Comparison with eq. (3) indicates that 

g(r' ,  p) = IfTr{a(r-p)~bw(r)}l 2, (14) 

where 

= (15) 

Thus when WPM is applied to a reduced microd- 
iffraction data-set (as defined by eq. (10)), it 
simply reconstructs a windowed version of the 
extended specimen function (provided that w(p) 
effectively satisfies the condition mentioned 
above). 

This scheme is now applied to measured opti- 
cal microdiffraction data. An extended specimen 
was fabricated by mounting three copper grid 
specimen mounts at different orientations on a 

b 

Fig. 4. Reconstruction of an extended specimen: (a) square-root of  bright-field image for 8 mm aperture,  (b) bright-field image for 2 

mm aperture,  (c) magni tude and (d) phase of ~(p)  reconstructed to twice the p '  cutoff for 2 mm aperture, using only data 
corresponding to values of p within the square superimposed on (a). 
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b 

cl 

Fig. 5. Reconstruction of a phase specimen: (a) bright-field image for 4 mm aperture, (b) magnitude and (c) phase of ~(p) 
reconstructed to the p '  cutoff, (d) magnitude and (e) phase of modelled specimen function, diffraction-limited by 8 mm aperture. 
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glass microscope slide. Fig. 4a shows the square- 
root of the 50 x 50 pixel bright-field image ob- 
tained with a tight probe (8 mm diameter objec- 
tive aperture). A data-set was then collected with 
a wide probe (2 mm diameter objective aperture), 
the bright-field image of which is shown in fig. 4b. 
A smooth window function was applied to this 
I M(r', p) l 2, which reduced all pixels to zero for 

values of p outside the 22 x 22 pixel square su- 
perimposed upon fig. 4a. The magnitude and 
phase (displayed on a linear grey-scale ranging 
from -~" to 7r) of the reconstructed specimen 
function are shown in figs. 4c and 4d, respec- 
tively. 

6. Reconstruct ion  of  a pure phase  spec imen  

WPM can in principle be employed to image 
phase specimens, since it recovers the complex 
amplitude of the specimen function. It is now 
shown that this is indeed possible with measured 
microdiffraction data. 

A pure phase specimen with known phase 
variation was required, so that it could be demon- 
strated that WPM can successfully reconstruct 
the specimen phase. A suitable specimen was 
constructed by evaporating a layer of borosilicate 
of approximately 470 nm thickness onto a glass 
microscope slide. A copper specimen mount with 
a 200 /xm diameter hole was used as a mask, 
which was removed after evaporation, thereby 
leaving a transparent disc on the glass substrate. 
The phase delay introduced to a beam passing 
through this disc relative to one passing outside 
the disc is approximately 27r/3. It should be 
pointed out that a weak-phase approximation is 
not valid for this specimen, our intention being to 
show that WPM is also applicable to strong-phase 
specimens. 

With the specimen described above, a data-set 
was collected with a 4 mm objective aperture. 
The bright-field image obtained from this data-set 
is shown in fig. 5a. Note the appreciable contrast 
in the bright-field image, despite the imaging lens 
being at Gaussian focus, due to the specimen not 
being weak-phase. Figs. 5b and 5c show the mag- 
nitude and phase (displayed on a linear grey-scale 

ranging from - 0 . 4  to 2.1) of the reconstructed 
~(p),  reconstructed up to the p '  cutoff. The value 
of the phase of ~(r )  across the disc is approxi- 
mately 1.9 relative to the background. This com- 
pares favourably with the expected value of 27r/3. 

It is informative to compare the reconstructed 
~ p )  with the expected reconstruction, which is 
possible in this case since the original specimen 
function is known. As explained in section 2, the 
ideal ~ p )  obtained when reconstructing up to 
the p '  cutoff is simply the specimen function 
diffraction-limited to twice the diameter of the 
objective aperture in reciprocal space. Figs. 5d 
and 5e show, respectively, the computed magni- 
tude and phase (displayed on the same grey-scale 
as fig. 5c) of a specimen function modelling the 
specimen used in the above experiment, after 
being diffraction-limited to a diameter equivalent 
to an 8 mm objective aperture in reciprocal space. 
Note the similarity between figs. 5e and 5c. Fig. 
5d, which has considerable contrast because the 
specimen is not weak-phase, has a form similar to 
fig. 5b, the differences being due to the effects of 
the Wiener filter used to form g~(r, p') (as 
described in section 2) and noise on the mea- 
sured data. 

7. Conclus ions  

WPM promises to overcome the resolution 
limit in the transmission electron microscope by 
relatively cheap and experimentally straightfor- 
ward means. All that is required is to collect a set 
of coherent electron microdiffraction patterns in 
the STEM from many probe positions, and per- 
form the recipe described above. Alternatively, a 
set of conventional images recorded at a number 
of beam tilt angles could provide a similar data 
set from a conventional transmission electron mi- 
croscope (CTEM). However, testing this scheme 
in the electron microscope for specimens which 
are not crystalline will not be easy, if only be- 
cause the resulting image cannot be compared 
with any known data. For example, if we obtained 
a sub-~ngstr6m resolution image of an amor- 
phous material, how can we trust the recon- 
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structed solution if it shows detail that has never 
been seen before and which cannot be tested 
independently? The experiments described above 
have served to show that insofar as electron scat- 
tering is analogous to light scattering, the WPM 
inversion method is computationally sound and 
robust for two-dimensional images. Of course, in 
the electron case we will face much greater diffi- 
culties: the specimen may contaminate, damage 
or drift during the data acquisition time; the 
scattering may not fulfill the projection approxi- 
mation we assume here; the illumination may not 
be sufficiently coherent, even when a field-emis- 
sion gun is used. We are confident, though, that 
the processing method can be relied upon, and so 
it would now be timely to apply the technique to 
the STEM. 

Acknowledgements 

The authors would like to thank Harald 
Miillejans, Andrew Bleloch and Dennis McMul- 

lan for assistance with the scanning optical micro- 
scope, and Mary Cluckie and David Wallis for 
help with specimen preparation. The financial 
support of the New Zealand (B.McC.) and Lon- 
don (J.M.R.) Royal Societies, and the Science 
and Engineering Research Council, is gratefully 
acknowledged. 

References 

[1] J.M. Cowley, Adv. Electron. Electron Phys. 46 (1978) 1. 
[2] J.M. Cowley, Ultramicroscopy 4 (1979) 435. 
[3] D. Gabor, Nature 161 (1948) 777. 
[4] J.A. Lin and J.M. Cowley, Ultramicroscopy 19 (1986) 179. 
[5] R.H.T. Bates and J.M. Rodenburg, Ultramicroscopy 31 

(1989) 303. 
[6] J.M Rodenburg and R.H.T. Bates, Phil. Trans. A 339 

(1992) 521. 
[7] J.M. Cowley, Appl. Phys. Len. 15 (1969) 58. 
[8] L. Cohen, Proc. IEEE 77 (1989) 941. 
[9] R.H.T. Bates and M.J. McDonnell, Image Restoration 

and Reconstruction (Clarendon, Oxford, 1986). 


