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If it were possible to assign phase to the microdiffraction plane available in a scanning transmission electron microscope 
(STEM) extremely high spatial resolution would be possible, limited only by the electron wavelength as opposed to the poor 
electron optics of the objective lens. This paper reviews the phase problem with respect to the microdiffraetion plane. 

1. Introduction 

Gabor holography [1] suggests an elegant solu- 
tion to the resolution limit imposed by spherical 
aberration in electron microscopy. This concerns 
itself with processing the central disc of a micro- 
diffraction pattern available in a scanning trans- 
mission electron microscope (STEM) [2]. How- 
ever, holography requires extremely stable experi- 
mental conditions in order to obtain a sufficiently 
broad angular coherence width across the il- 
luminating beam. Perhaps a more experimentally 
feasible approach would be to employ a smaller- 
angle beam convergence and to process also the 
scattered intensity outside the central disc (the 
"dark-field" intensity) where correlation data ex- 
ist, a subject which has been studied recently [3]. 
Microdiffraction then reduces to a classic phase 
problem. If it were possible to assign phase to 
every point in the microdiffraction plane, it would 
be possible to transform directly back to the wave- 
field that emanates from the specimen at whatever 
spatial resolution is required, limited only by the 
largest angle of diffraction that can be recorded. 
Assigning phase is not trivial, but there are many 
instrumental variables which, in principle, will 
make unique solution possible under certain cir- 
cumstances. 

This paper reviews the phase problem with 
respect to the microdiffraction plane. It is written 
under the assumption that it is experimentally 
possible to digitize the entire microdiffraction 
plane at TV rates (for example, by using a CCD 
array coupled to a YAG scintillator [4]), which 
gives access to very large quantities of diffraction 
data as a function of probe position. What should 
be done with all these data? Ideally, an inverse 
algorithm could solve for super-resolution speci- 
men structure, preferably in real time so that the 
microscope parameters could be adjusted ap- 
propriately. Here, the possibility of unique solu- 
tion is examined in order to suggest what may or 
may not be possible. 

2. Solving for phase: a brief review 

2.1. The problem 

If it is possible to record the complex wave 
disturbance in the far field of a coherent scattering 
experiment, it is possible to construct a direct 
linear transform to find the wave distribution at 
specimen function. Resolution obtainable in real 
space is inversely proportional to the extent of the 
wavefield recorded (and, of course, the k-vector of 
the radiation). Let the object be kO(x) in one 
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dimension. Then in the Fraunhofer limit we have 
a complex diffraction pattern D(k) ,  where 

O(k) = f" exp(ikx) dx, (1) 
OQ 

where it is assumed that k is scaled to x by the 
wavelength. Given that ultimately we are going to 
represent ~ ( x )  by a discrete set of points (for 
example, by a display of pixels on a computer 
screen), it is reasonable to represent ~ ( x )  by a set 
of equally spaced sample values ~ ,  where j = 
1, 2 . . . . .  N. Hence structural determination re- 
duces to having to find a solution vector xo in an 
N-dimensional space from a diffraction vector D. 
If we know the complex value of D, this reduces 
to a simple linear inverse Fourier transform. How- 
ever, given that we only ever measure I D ( k ) [  2, 
can we solve for ~/'(x)? 

Consider, for the sake of simplicity, a band- 
width-limited periodic function which fills half the 
unit cell. The diffraction pattern is also band- 
width-limited and periodic. Taking the Fourier 
transform of [D(k )  l 2 will yield the autocorre- 
lation function (that is, the Patterson function) 
such that 

N 

c(jax)=cj= }2 ~t,(x.).t,*(x.+jax). (2)  
n=l 

where Ax is the separation of the sample points in 
g '(x),  and the asterisk denotes the complex con- 
jt~gate. If, for example, N - - 6  and the non-zero 
elements of ' / ' (x)  are '/'1, "2 and '/'3 (where 
q,. = ' /fix.)),  eqs. (2) will look like 

c -  1 = ' / ' ?  '/'2 + '/'~* '/ '3, 

Co = g',q'a* + g'2g'2 * + g'3g'3 * , (3) 

ca = + 

c~ = ' / 1 % * .  

There are three independent equations (c,  = c * , )  
but  they are not in general uniquely soluble. Even 
if q ' (x)  is known to be real and positive there can 
still occur unexpected multiple roots apart from 
the obvious ones such as g" ,  where ,I,~ = g'3, 
g'~ = q'2 and g'3' = gtl- Naive substitution from the 
extremal equations inwards makes the entire solu- 
tion highly noise-sensitive. Solution by a New- 

ton-Raphson  iteration is well-behaved, but is still 
plagued by multiple roots. In this example we can 
write 

'/'a s + (2c2 - c0)'/'16 + (2c 2 + c 2 -  2CoC2) ~/'; 

3 2 2 4 + (2%-CoC2)~  i + c z = 0 ,  (5) 

where 

~/t2 ~ e l  C 2 
C2 , ' ~ / t 3 = ~ ,  

Tll 
and where for simplicity it has been assumed that 

is real. There are up to eight solutions, though 
restricting • to be real (which it will not be in the 
case of electron microscopy) may in special cir- 
cumstances result in a unique solution (for exam- 
ple, if • is centrosymmetric and positive). 

This example illustrates two important points. 
(i) It is invariably possible to find solutions to the 
one-dimensional phase problem which fit the re- 
corded data: the problem is that a large number of 
compatible solutions exist. (ii) The correlation 
function is twice as wide as the object function, so 
in order to solve for ' / f ix) without overlap or 
wrap-around, the unit cell must be at least twice 
as wide as the object function. This is equivalent 
to noting that components of intensity have twice 
the frequency of their underlying complex compo- 
nents, so the diffraction plane must be sampled on 
a grid of half the spacing of that needed for the 
direct linear transform. 

An alternative view of the question of the mul- 
tiplicity of solutions can be pictured by consider- 
ing the continuation of either the object or diffrac- 
tion functions into the complex plane. For  a de- 
tailed review of this construction in the one-di- 
mensional case see Saxton [5]. Complete knowl- 
edge of D(k)  implies complete knowledge of ~/'(x), 
and vice versa, so the choice of plane is not 
essential. In taking the Fourier transform of q ( x ) ,  
we could allow k to take all complex values z. The 
transform then becomes 

D ( z )  = f[~t ' (x)  exp( izx)  dx ,  (4) 

where z = a + i t .  By stipulating certain condi- 
tions on ' /f ix) and the interval (a,b), which in 
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general will be fulfilled by any physical specimen 
and which are discussed in detail elsewhere [6], it 
can be shown that D(z) is an entire function. 
That  is, it can be expanded as a Taylor series at 
any point in the complex plane, and hence will be 
defined by its complex zeros. This is similar to 
expanding a real function as a polynomial, and 
noting that its roots give a full description of the 
function. In general, if D(k) (or ~P(x)) require N 
components (or sample points) to be described 
fully, then there will be N relevant complex zeros 
when they are continued into the complex plane. 
For finite objects (which have infinitely wide 
transforms), there are an infinite number of zeros, 
but  only N are needed to obtain a good approxi- 
mation to the original function. Moving zeros 
around preserves the number of Fourier compo- 
nents in the resulting function, but only a limited 
set of such movements will give the recorded 
intensity. In fact, for each zero in D(z) there is 
one other zero which will maintain the form of 
ID (k )  l 2. Therefore, for an N-component func- 

tion, the are 2 ~v possible combinations of complex 
zeros that are compatible with the recorded inten- 
sity. This is the origin of the ambiguity of solution 
in the phase problem. 

2.2. Mathematical conditions for solubility 

Burge et al. [6] have derived a mathematical 
framework with which to understand the one-di- 
mensional phase problem in terms of logarithmic 
Hilbert transforms. This is particularly useful for 
understanding why a hologram yields a unique 
solution to the phase problem, especially when it 
occurs only as another form of far-field intensity 
distribution, as is the case of the central disc of a 
microdiffraction pattern. If it is known that the 
object function is finite, certain restrictions are 
placed on D(k), which can allow direct solution 
for the phase of the scattered wavefield. These 
ideas are closely related to causal transforms which 
arise in many fidds, for example, the Kramers-  
Kronig relations between the real and imaginary 
parts of the dielectric function [7] and coherence 
theory [8]. In relation to the phase problem, it is 

possible to write 

D(z)  = [D(z)  l exp[iqJ(z)], (6) 

and taking the logarithm 

In D(z)  = in ID(Z)  t + i [ ~ ( z )  + 2~rn]. (7) 

The real part  of this function only depends on 
the modulus of D(z) ,  which is what can be mea- 
sured along the real axis, and so applying the 
theory of residues, it is possible to derive a Hilbert 
transform to determine g}(z) directly. Here, n 
denotes the Riemann surface in which In D(z) is 
defined. Zeros in D(z) create branch points in In 
D( z ), and there are difficulties if lim k _. ~o D( k ) = 
0, which will usually be true in practice. The 
Hilbert transform requires a semicircular path in- 
tegral of infinite radius in the upper half of the 
complex plane, which gives the "Hilber t  phase". If 
there are no zeros in D(k)  enclosed by this path 
(i.e. In D(k)  is analytic throughout the half plane), 
then the Hilbert phase equals the true phase, 
provided a means is found to stop hi D(z) tend- 
ing to - o¢ where D(z) tends to zero, for example 
by adding a constant to D(z) and accounting for 
this at a later stage. In general, there will be zeros 
in D(z), creating branch points in In D(z), in 
which case they have to be found so that their 
residues can be added as a sum of terms to the 
Hilbert phase. 

These schemes represent two main ideas. (i) If 
it can be arranged that D(z) has no zeros in one 
half of the complex plane, then the phase of D(k)  
can be found directly from its modulus alone. (ii) 
If there are zeros in both halves of the plane, they 
have to be located in at least one half, which 
brings us back to the ambiguities described in the 
previous section. In physical terms the easiest way 
to arrange for (i) to be true is to add a large 
known reference function so that there are no 
zeros in the upper half plane: this is the principle 
of holography. In the absence of a reference beam, 
more than one independent intensity experiment 
must be performed, so as to resolve the 2 N am- 
biguity described earlier. The microdiffraction 
plane is a combination of both these types of 
information. 
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2.3. More than one plane or more than one dimen- 
sion 

Conventional transmission electron microscopy 
(CTEM) is able to access two planes of intensity 
information, [ g'(x) [ 2 and [ D ( k )  [2, but only up 
to a resolution defined by the objective aperture 
which truncates D(k) .  The image plane can never- 
theless only be recorded in intensity, and so 
calculating its phase does qualify as a type of 
phase problem. It may be postulated that for any 
general function xl,(x) which has large variations 
in phase, the number of complex functions com- 
patible with [ g t(x) [ 2 is limited if due account is 
taken of [D(k) [ 2. In other words, [ '/ '(x) [2 re- 
corded over N pixels has 2 ~ possible solutions for 
~/'(x), but very few of these will give ]D(k)[ 2 
where D ( k )  is the Fourier transform of ~/'(x). 
This is an example of a one-dimensional phase 
problem without a holographic reference beam 
where solution is tractable by virtue of being able 
to access two independent intensity experiments. 
Rather than locating all complex zeros and 
eliminating those which are not compatible with 
the two sets of measurement, successful solutions 
to this problem have proceeded by iterative con- 
vergence. For example, in the Gerchberg-Saxton 
algorithm [9-11] a random phase distribution 
~/'r(X) is assigned to one plane of data, say ~/'(x), 
to form ~l,(x) exp[i0r(x)], where ~l'(x) is real and 
is the square root of the measured intensity. This 
is then transformed to the diffraction plane, where 
it is unlikely to resemble the measured [D(k)[ 2. 
The modulus of the resulting transform is dis- 
carded, but its phase is used as a first guess for the 
phase of D(k) ,  which is then transformed back to 
the image plane. The process is repeated, at each 
step the modulus being discarded, but the calcu- 
lated phase is reassigned to the measured modulus 
in either plane. It turns out there can still occur 
certain ambiguities in the solution calculated by 
this technique [12], and in practice there are prob- 
lems with convergence if either the phase changes 
in the object function are weak or the data are 
corrupted by noise [13]. However, this method 
demonstrates that there can exist practical compu- 
tational algorithms for converging on solutions 
when two intensity experiments are available. Two 

images of the same object taken at different set- 
tings of defocus may also suffice [14-16], and in 
principle more and more sets of data can be 
collected under different illumination conditions 
until the final solution is guaranteed to be unique. 

In the case of a two-dimensional finite object 
function, the phase problem becomes much more 
tractable [17]. Even when only the diffraction plane 
of intensity information is accessible (which will 
be referred to as the "strict" phase problem), 
increasing the dimension of the object function 
greatly reduces the possible number of ambigui- 
ties. Consider a two-dimensional array of n × n 
pixels. It is possible to continue either a row or a 
column of pixels into the complex plane. Each of 
these functions will have 2 n complex roots. How- 
ever, the pixel lying on the intersection of the row 
and column only has a single phase associated 
with it. There are two sets of possible phases 
which the pixel may have according to each of the 
possible root combinations taken along either the 
row or the column. The intersection of these two 
sets will normally have far fewer elements than the 
2 n ambiguity. This method of elimination can be 
repeated for the next row or column, or even at 
diagonals across the plane through the same pixel. 
Similarly, in terms of correlation equations like 
those in eq. (3), in 2D there are roughly 2N 
meaningful equations for N unknowns, in com- 
parison to the 1D case of N equations for N 
unknowns. It is interesting that even as long ago 
as 1939 Wrinch [18] discussed the existence of 
degenerate solutions in the case of discrete points 
scatterers in terms of vector maps, and concluded 
that the 2D solution is very rarely non-unique. 

In practice, of course, there will be no formal 
solution to all the possible correlation equations 
that can be constructed in the two-dimensional 
problem because data are bound to be corrupted 
by noise. However, Fienup (see, for example, ref. 
[19]) has developed convergent algorithms similar 
to the Gerchberg-Saxton scheme for the strict 2D 
phase problem which are relatively noise-robust, 
yet for which only knowledge of the support of 
the object function is required (as opposed to its 
intensity distribution). (The support of a function 
is the region over which it is non-zero.) This is 
quite remarkable when compared to the intracta- 



J.M. Rodenburg / The phase problem, microdiffraction and wavelength-limited resolution 417 

bility of the one-dimensional problem, especially 
when the object is allowed to be complex [20]. 

3. Microscopy and microdiffraction 

In this section it will be assumed that (i) the 
electron wave interacts multiplicatively with the 
specimen - i.e. if the probe profile is given by 
P(x ) ,  then immediately beyond the specimen the 
wave distribution is P(x) f f ' (x ) ;  (ii) the Ewald 
sphere is adequately represented as flat - that is, 
that the specimen appears as a projection at one 
level of defocus. This approximation is often used 
in high resolution imaging, but it must be borne in 
mind it is a poor approximation in microdiffrac- 
tion, where very large angles of scatter are accessi- 
ble. In reality, multiple scattering effects are strong 
in all but the very thinnest specimens. However, it 
is assumed that it should normally be possible to 
find a thin edge of a specimen, and in what 
follows solution of atomic structure will anyway 
only be practical in the very thinnest specimens. 

In terms of electron microscopy, confining our- 
selves to the strict phase problem is equivalent to 
having to calculate the complex specimen function 
using only the diffracted intensity in the back 
focal plane of the objective lens. Surprisingly, the 
previous section suggests that, being a 2D prob- 
lem, this is in principle tractable as long as the 
specimen is finite. However, conventional (select- 
ed-area) diffraction is performed over relatively 
large areas of specimen (of the order of microns) 
which gives diffraction patterns with extremely 
fine structure. In practice, this structure cannot be 
measured, partly because the detector is unlikely 
to have a fine enough element size, and partly 
because the illumination is unlikely to be suffi- 
ciently coherent (i.e. the diffraction pattern will be 
convolved with a large source size). Solution of 
phase relies upon extracting all information from 
the coherent diffracted intensity - that is, it is 
necessary to record the pattern on a grid corre- 
sponding to the Nyquist sampling frequency (in 
reciprocal space) of the most rapidly varying in- 
tensity component, which is proportional to the 
size of the specimen. It should be emphasised that 
it is not possible to solve for phase from a "cross- 

grating" diffraction pattern from an infinite crys- 
talline object. The solution techniques described 
above rely on finite object function support, so 
that diffraction orders are blurred and they have 
the opportunity to interfere with one another. A 
very small crystallite will scatter significant inten- 
sity outside the reciprocal lattice points, and all 
this information must be collected in order to 
solve for phase. Clearly, this scheme is both im- 
practical, and wasteful of the properties of the 
objective lens, which is capable of re-interfering 
large sections of the diffraction pattern in a 
phase-conserving way. 

Let us consider the information available in a 
microscope which is being run with an objective 
aperture chosen for optimum resolution at Scherzer 
defocus. It is usual to think only of the bright-field 
image intensity. However, there is also the possi- 
bility of tilting the illuminating beam to form 
many distinct dark-field images, thus exploring 
diffraction orders which exist well outside the 
objective aperture when the illumination is 
paraxial. By reciprocity [21], a microdiffraction 
pattern is a plot of the intensity at one image pixel 
as a function of all angles of illumination (see fig. 
1). This represents a far greater body of informa- 
tion than the conventional image. In order to 
consider how to process it, it is easiest to study the 
microdiffraction plane as a phase problem. We 

\,.,,p,ocu, / 
l l l u m l  Space 

i , , ,  , specimen 
, t  i 

,t, 

°,'°T"% 

, / oa, spac.\ 
I m a g e  

: J  
: Microdiffraction 

S o u r c e  

Fig. 1. Comparison of the information available in a CTEM 
(left) and STEM (right). In both machines there are 4 dimen- 
sions of intensity measurements available. In CTEM, a 2D 
image plane for every incident angle of illumination; in STEM, 
a 2D microdiffraction plane for evexy image pixel. The latter 
reduces to a far-field phase problem with the specimen mod ~ 
ulated by the probe profile, wfiich is an aberrated Airy disc 

function. 
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can regard the richer structural information avail- 
able in a STEM as resulting from the probe-pro- 
file delineating such a small region of specimen 
that the far-field diffraction plane (the microdif- 
fraction plane) possesses large enough intensity 
variations for a practical, multi-element detector 
to be able to extract all the available intensity 
diffraction information from the single image pixel 
being illuminated. If, for example, the  probe is 
incident upon an amorphous material, intensity 
variations due to the finite size of the illuminated 
volume are clearly visible [22]. These are condi- 
tions in which solution of phase should become 
possible. A relatively small objective aperture can 
be used, yet very high angles of scatter are availa- 
ble. Furthermore, we have the ability to move the 
probe relative to the specimen, so performing es- 
sentially independent intensity experiments. 

3.1. As  linear and quadratic equations 

more simultaneous equations of the form (for 
f =  5) 

PIP;'%'I';' + P2P;"I'd' ' + . . .  PNPT  

= H~, 

+ . . .  PN_IP~v ~TtN+4~/t~+ 5 = H15, 

P1 P ~  ~/ts~/t~+ 1 = H N  5 . 

(9) 

At first it may appear as if infinitely many such 
equations are available, but they do not all con- 
tain independent information. To show this, we 
could construct a matrix P of the form 

P~P7 
PNPT~ 

P= PN_IP~/_I 

e2P~' P3P;' ... P,e~,  
PIP; '  P~PI' ... P~ -J '~ . - I  

P~P7 

Working, for simplicity, in one dimension, let 
the probe-profile in a STEM be P(x ) ,  a complex 
quantity which can be represented by a discrete 
set of values Pj, where j = 1, 2 . . .  N. P ( x )  is the 
Fourier transform of the objective aperture func- 
tion, which will contain the usual phase changes 
due to spherical aberration and defocus. Taking 
the Fourier transform of the intensity of a single 
microdiffraction pattern, we can rewrite the 
quadratic correlation equations (3) as 

P1P7 %'I"7 + e2P 't'2¢# + . . .  PNP 't'N't'7  

= H ° ,  

+ + . . .  

= H ° ,  

P1PT, = n o ,  

(8) 

where H f is the gila Patterson component from 
the f t h  probe-position. In STEM we can shift the 
probe relative to the specimen to produce yet 

such that 

P $  -- Ho, (10) 

where 

where H 0 is a vector of elements H~, where f=  
1, 2 . . . . .  M. Here, we have simply taken the first 
equation of (8), and first equation of all such sets 
of equations such as (9). We could write similar 
sets of linear equations by using the jth equation 
from each quadratic set, so as to solve for a vector 
composed of terms like ~/',~/'*+j. As written here, P 
is a finite Teopfitz matrix, very similar to those 
encountered in signal processing theory [23]. In- 
deed, microdiffraction is closely akin to processing 
theory, in that it represents a space-resolved spa- 
tial-frequency spectrum, whereas in signal 
processing such as speech recognition, data are 
often represented as a time-resolved frequency 
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spectrum. For simplicity, P has been allowed to 
wrap around itself, implying that the probe is 
repeated periodically. Repetitions make no dif- 
ference provided, once again, that the specimen 
only fills half the unit cell, or the probe function is 
effectively zero throughout half the unit cell. In 
practice, the probe is an Airy disc function which 
decays rapidly away from the central lobe. These 
outer regions have very serious consequences when 
the specimen is crystalline and of small unit cell 
(see next section). Choosing a higher sampling 
frequency in both ~I' and P increases the dimen- 
sion of eq. (10) but nevertheless a solution vector 
using this set of equations is not available up to 
arbitrarily good resolution. This is because the 
P(x )  is bandwidth-limited, being the transform of 
a finite aperture. The convolution of P(x )  and "11 
(i.e. the scanned image) is also bandwidth-limited, 
and so increasing the sampling rate above the 
Nyquist frequency of the highest component in 
the image renders the matrix P singular. This is 
most easily seen by attempting to solve (10) by 
employing the deconvolution theorem. Because the 
transform of P(x) ,  the aperture function, is finite, 
a divide by zero will occur at frequency compo- 
nents higher than those present in the probe. This 
is equivalent to saying that Fourier components of 
intensity in the microdiffraction plane do not vary 
significantly when the probe is moved laterally by 
a distance less than the conventional incoherent 
image resolution of the microscope. 

However, it the unit cell is larger than the 
image resolution, it is possible to generate at least 
more than one set of quadratic equations per- 
taining to the same specimen dements. This abil- 
ity to perform multiple intensity experiments (and 
hence effectively be able to locate the complex 
zeros of the specimen function without requiting 
the central disc holographic reference beam where 
conventional bright-fidd image information resi- 
des) renders the microdiffraction phase problem 
much more tractable than the strict phase prob- 
lem. Furthermore, the microdiffraction plane is 
inherently two-dimensional, which will further en- 
hance its solubility. Also, for a very thin specimen, 
it would be reasonable to assume the phase-grat- 
ing approximation, so that Ixr'(x)l--1, which 
would greatly limit compatible solutions. Unfor- 

tunatdy, though, certain problems are created by 
the bandwidth-limited nature of the probe. These 
are easy to recognize in the case of a perfect 
crystal (see below), but may also arise in other 
specimen functions which are of infinite extent. 

3.2. Solving for phase in reciprocal space 

The extra information available by being able 
to move the probe in STEM can be conveniently 
thought of in terms of a technique first suggested 
by Hoppe [24-26], later referred to as "ptychogra- 
phy" [27], and discussed by Spence with respect to 
the microdiffraction plane [28]. Ptychography was 
originally viewed as a diffraction phenomenon 
employing a small aperture at the specimen plane 
which could be moved laterally by a small amount. 
The effect was to change the interference condi- 
tions in the diffraction pattern so that simulta- 
neous equations could be derived to solve for the 
phase of each diffracted beam. Of course, shifting 
an aperture and observing the transmitted inten- 
sity is a primitive form of imaging capability. 
However, if the entire diffraction pattern is re- 
corded and given phase, the object can be ob- 
served at a resolution corresponding to the highest 
angle of diffraction available. The aperture size 
may be large, provided the spacing of the detector 
dements in the far field is appropriately fine. This 
is the problem posed by microdiffraction. In a 
later review, Hoppe and Hegerl [29] eulogized the 
possibility of using a STEM as a sophisticated 
diffractometer, but they did not comment on the 
possible difficulties associated with having a band- 
width-limited probe function instead of a well 
defined aperture in the specimen plane. 

Consider a specimen of moderately large unit 
cell illuminated by a STEM probe. In the far field, 
each reciprocal lattice point is convolved in ampli- 
tude with the circular objective aperture function 
as in fig. 2. If we assign an arbitrary phase of zero 
to thezero-order beam, the phase of the first-order 
diffracted beam can be determined to within two 
possible solutions by measuring the intensity in 
that disc and in the region of overlap where the 
beams interfere. Higher-order beams can be phased 
similarly with respect to lower-order beams. The 
two-fold ambiguity can be removed by shifting the 
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8 A 

Mlcrodlffraction plane 

Complex plane 

Fig. 2. Two overlapping discs in the microdiffraetion plane 
allow for the possibility of measuring three intensities at A, B 
and C. If the phase of one of these diffraction orders is put to 
zero or is known, the other beam can be phased to two possible 
alternatives. In the complex plane, the square root of the 
intensities at A, B and C will give rise to circles of the radii 
shown. Ptychography (probe movement) resolves the ambigu- 

ity. 

probe by a small amount in the specimen plane. 
Shifting is equivalent to adding a phase ramp 
across the aperture function which then adds a 
different phase change to both beams before they 
interfere, thus allowing the construction of simul- 
taneous equations. In the two-dimensional case, 
ambiguity is further reduced (as one would ex- 
pect) because there is an increased ratio in the 
number of overlaps to the number of discs. 

Now let us examine the effects of specimen size 
and unit cell size in ptychography. Towards the 
limit of an amorphous specimen, that is an ex- 
tremely large unit cell, each point in the diffrac- 
tion plane will have contributions from many 
overlapping discs. However, there is a correspond- 
ingly large number of independent experiments 
that can be performed by shifting the probe to 
many distinct places within the unit cell. For an 
isolated, finite specimen, reciprocal space does not 
need to be sampled on an infinitely fine grid. The 
sampling theorem implies all the pertinent infor- 
mation is encapsulated in intensity measurements 
in the diffraction plane at points corresponding to 
a real-space unit cell twice the size of the object 
functiom In practice, finite detector-element size 
in the microdiffraction plane will define a region 
of specimen over which it is possible to solve for 
specimen structure at any one time. By reciproc- 
ity, such a region is equivalent to the coherence 

width in the image plane of a CTEM due to the 
finite source size. 

The opposite extreme of very small unit cell 
raises an interesting problem: what happens if the 
diffracted discs do not overlap? Solution of the 
phase becomes definitely impossible. This is be- 
cause structural determination in the general for- 
mulation of the phase problem (and without a 
reference beam) relies either on finite support of 
the object function or multiple independent inten- 
sity experiments. Ptychography only works on an 
infinite crystal if there exist distinctly different 
positions to which the probe can be moved within 
the unit cell. However, if an infinite specimen of 
small unit cell were rendered finite, simply by the 
addition of a single very heavy atom lying within 
it, then the diffracted amplitude from that atom 
could, in principle, be used to phase the rest of the 
microdiffraction pattern as the probe is moved 
relative to the specimen. 

Now let us consider the zero-order diffraction 
disc. For a thin or mostly transparent specimen, 
this beam is very strong relative to the specimen 
diffracted amplitude and so can be employed for 
in-line holography as originally suggested by 
Gabor [1,30]. The only information lost is the sign 
of the wavefield amplitude, which results in the 
existence of two reconstructed images. These can 
be well separated in side-band holography, but in 
Gabor holography they must be separated by 
severely defocussing the probe, so that the recon- 
structed images exist either side of the beam 
cross-over. The microscopical advantage of the 
technique is that the electron lens used to form the 
hologram may possess large aberrations, provided 
that this is accounted for in the reconstruction. 
Under these conditions, one reconstruction is true 
to the original specimen, while the other is doubly 
aberrated. 

Holography has been investigated more re- 
cently by Lin and Cowley [31], especially with 
application to STEM. They point out that the 
ability to shift the probe leads to further possibili- 
ties in separating the two reconstructed images. 
We can understand this further reduction of am- 
bignity by considering the hologram as a zero-order 
ptychography disc. Solving for the two-fold am- 
biguity of ptychography relies on shifting the 
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Fig. 3. Overlapping discs with severe defocus will cause fine 
fringes in the region of overlap. This information resolves the 
phase ambiguity in fig. 2, and is similar to the need to defocus 

in Gabor holography. 

probe. Alternatively, greatly defocussing the probe 
creates much finer interference fringes within the 
regions of disc overlap (see fig. 3). This allows 
unambiguous determination of phase because 
many phase combinations can be sampled accord- 
ing to the relative position of the interfering beams 
with respect to the aperture function which will 
contain concentric variations in phase due to de- 
focus. Of course, this requires a very fine detector 
element size because the region of specimen il- 
luminated is much larger when the probe is 
defocussed. However, the two-fold ambiguity of 
ptychography can be viewed as analogous to the 
need to separate reconstructed images in hologra- 
phy: they both result from the ambiguity of  
addition in the complex plane. The Gabor holo- 
graphic solution to this problem is to defocus, the 
ptychographic solution is to shift the probe. How- 
ever, whereas holography can only be performed 
within the central disc which is strong relative to 
diffracted amplitude, ptychography can be used 
between beams of comparable strength and there- 
fore can be used to phase very high angles of 
diffraction where super-resolution information 
resides. 

4. Conclusions 

There are three main ways of resolving the 
ambiguities which arise in the phase problem: (i) 
by the addition of a reference beam (holography); 
(ii) by increasing the dimension of the problem, 
given that the object function is finite; (iii) by 
performing more than one independent intensity 
experiment. The information in the central disc of 
the microdiffraction plane falls squarely into cate- 
gory (i). However, the "dark-field" scattered in- 

tensity falls rather awkwardly between categories 
(ii) and (iii). Although probe movement (i.e. the 
conventional imaging capability of a microscope) 
allows multiple intensity experiments to be per- 
formed, the object function is never finite because 
the probe function decays away from a central 
maximum. This is particularly debilitating in the 
case of an infinite crystal of small unit cell, where 
phasing the higher-order beams becomes deft- 
nitely impossible. For objects of large or infinite 
unit cell, it should be possible to develop an 
algorithm which employs all a-priori knowledge of 
the specimen, the two-dimensional constraints of 
the strict phase problem and the ability to perform 
independent intensity experiments by moving the 
probe. The aim would be to solve for specimen 
structure at spatial resolution corresponding to the 
largest angle of diffracted intensity that can be 
recorded. 

The advantage of microdiffraction is that it is 
relatively straightforward experimentally. Unlike 
high-angle holography, it does not require such 
extremely stable apparatus, even though the in- 
verse calculation is much more complicated. How- 
ever, there are very severe problems which should 
not be underestimated. Here we assume that the 
electron wave interacts linearly with a two-dimen- 
sional projection of the specimen. In practice, at 
high angles of scatter, there will be significant 
interference between waves scattered from the top 
and bottom surfaces of the specimen. This may 
ultimately allow for 3D solution of specimen 
structure, but would complicate the types of itera- 
tire solutions already developed for the 2D prob- 
lem. More serious difficulties (which incidentally 
also apply to the holographic technique) will arise 
from multiple, inelastic and thermal-diffuse 
scattering, all of which will mask the simple Four- 
ier-optic signal discussed above. Any practical, 
useful algorithm for the inverse calculation of the 
object function will have to account for all these 
effects, or else only operate within well defined 
limits (e.g. only for very thin specimens). Further- 
more, the technique will still have to face all the 
usual experimental frustrations like specimen 
damage and contamination. We can conclude, 
therefore, that though the phase problem in micro- 
diffraction is much more tractable than the strict 
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phase problem, and though there may be great 
gains in spatial resolution possible by processing 
the whole plane as a function of probe position, 
achieving this experimentally will not be a trivial 
exercise. 
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