
Ultramicroscopy 87 (2001) 105–121

A simple model of holography and some enhanced resolution
methods in electron microscopy

J.M. Rodenburg*

Materials Research Institute, Sheffield Hallam University, City Campus, Sheffield S1 1WB, UK

Received 3 May 2000; received in revised form 11 September 2000

Abstract

A simple pictorial model of electron interference effects based on an extended representation of the autocorrelation
function is described and developed. Unlike Abbe’s theory of transmission imaging, the model incorporates fully the
effect of the loss of phase that occurs in the detector plane. The aperture transfer function and information limit

(envelope function) are also incorporated with reference to the simplest scattering geometry of Young’s slits. The model
is then applied to holography, the diffraction phase problem, ptychography, Wigner distribution deconvolution,
conventional bright-field imaging, single side-band imaging and tilt-series reconstruction. Some of these methods

require an understanding of four-dimensional integral functions, but the model reduces the problem into a projection of
a two-dimensional space. It is hoped that the model will help material scientists who are not specialists in imaging and
diffraction theory to understand some recent developments in advanced super-resolution imaging methods.

# 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

There are a number of advanced transmission
electron imaging techniques which may obtain
better resolution, or more easily interpretable
information, by using unusual scattering geome-
tries combined with inverse computation methods.
As computing power becomes cheaper and detec-
tor technology is improved, these techniques have
increasing potential to deliver real gains in
microscope performance. Indeed, it may even be
appropriate to change the whole rationale of
electron microscopy and steer the instrumentation

development in favour of exploiting indirect
methods. However, such techniques, especially
those that rely on exploiting illumination tilt series
or the microdiffraction plane of the scanning
transmission electron microscope (STEM), are
hard to understand for non-specialists. Further-
more, much scepticism is met by any method
which claims to surpass the resolution limit defined
in terms of the maximum spatial frequency that
can pass through a limited aperture. In this sense,
Abbe’s theory has become an impediment to our
understanding of some indirect super-resolution
methods.
In this paper I propose a different way of

thinking about transmission imaging theory. The
model is simply an extension of Abbe’s theory, but
it automatically builds in the phase problem and
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the fact that other variables, such as the angle of
illumination (or, in the case of STEM, the extent
of the microdiffraction plane) can provide infor-
mation that greatly surpasses the conventional
resolution limits. The model is primarily a way of
picturing the consequences of complicated inter-
ference effects that are generally expressed as
rather complicated integral equations. For the
purposes of clarity, I keep to single set of co-
ordinates and use a simple pictorial allegory. In
practice, the co-ordinates of the data are some-
times in reciprocal space and at other times in real
space, but I do not express these differences in the
mathematics. Note also that I do not strictly
differentiate between convolution and correlation:
depending on definitions of physical co-ordinates,
the aperture function should in places be reflected
along the x-axis, but this is not crucial to the main
picture. What matters here is to give the broad
scope of how some rather seemingly unrelated
techniques–holography, ptychography, single side-
band imaging, bright-field imaging, the classic
diffraction phase problem, and Wigner distribu-
tion deconvolution, tilt series reconstruction–can
all be represented in a single diagram.
In the next section, the pictorial representation

is introduced without any justification or back-
ground but is used to explain the simplest
reconstruction method: holography. We write
down a simple version of the mathematics in
Section 3. After a brief explanation of how the
model relates to Young’s slits, holography and the
classic phase problem in Section 4, we discuss how
the limits of interference and the problems of
increased resolution impact upon the model in
Section 5. Section 6 then describes some of the
conventional and super-resolution techniques in
the context of the model. Conclusions are pre-
sented in Section 7.

2. The qualitative model

Think of a paintbrush, loaded with paint, drawn
diagonally across the surface of a wall, as shown
in Fig. 1a. Assume the paintbrush has an uneven
distribution of paint loaded onto its bristles, and
that this distribution can be represented graphi-

cally by a one-dimensional plot, also shown in
Fig. 1a. If the value of this one-dimensional
function has a certain numerical value correspond-
ing to a particular bristle on the paintbrush, then
imagine that this value has now been painted along
a line across the wall. In other words, any point in
the wall that was touched by that bristle now has
the numerical value associated with that bristle.
Now take the same brush and perform a second
diagonal brushstroke, in an inclined direction,
across the first, as shown in Fig. 1b. If this was a
real paintbrush, we would expect the quantity of
paint at any one point on the wall to be, roughly,
the addition of the quantities of paint left by each
of the individual brushstrokes. In what follows,
however, we have to imagine forming the product
of the two numerical values painted on the wall.
Lets call this the ‘paint product function’. If the
paintbrushes were both evenly loaded with paint,
the paint product function would form a diagonal
shape and would have zero value elsewhere. For
more complicated functions, like a square wave
distribution of paint, the product could have
quite complicated structure, as shown in Fig. 1c,
where dark regions represent areas of the wall
which have a large numeric value. We assume the
wall has a default value of zero: in other words,
parts of the wall that are only painted by one of
the brushstrokes form a zero product.
To proceed, we next form a horizontal integra-

tion of this strangely painted wall into another
one-dimensional function. One way to imagine this
is to take a dry paintbrush and to sweep it
horizontally across the freshly painted wall. This
paintbrush picks up paint from the wall. A bristle
that passes over dense areas of paint (that is, paint
formed from the product on the first two
brushstrokes) builds up a large quantity of paint:
each bristle integrates the paint-product function
in the horizontal direction. The process is shown in
Fig. 1d. In other words, we project (i.e. integrate)
the paint on the wall onto a one-dimensional
vertical line, which has a corresponding one-
dimensional distribution of paint along it. This is
a function of the vertical co-ordinate, y, and Fig.
1d, as in later figures, we can view a conventional
plot of this projection by viewing at right-angles to
the page the graph to the left of the main diagram.
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To summarise: we start with a one-dimensional
function; we paint this in two diagonals across a
wall; we form the product of the two brushstrokes;

and finally, we project (integrate) this function in
the horizontal direction, thus ending up with a
second one-dimensional function.

Fig. 1. (a) A single paintbrush function. A two-dimensional ‘wall’ function wðx; yÞ has been painted across by a one-dimensional
function, f ðxÞ. Every point in wðx; yÞ lying on a diagonal line has the same numerical value. Those points touched by a particular
bristle of the paintbrush have the value corresponding to f ðxÞ on that bristle. (b) Two strokes from the same paintbrush cross one
another. In the model, the diagonal area where the strokes overlap have a value corresponding to the product of each individual

paintbrush function. (c) For a simple function consisting of two top hats of different sizes, the ‘paint product function’ has diamond-

shaped areas of positive value. Darker areas represent areas where the product is large. Areas covered by just one paintbrush function

have zero as product value, because we assume unpainted areas have a default value of zero. (d) The horizontal projection of the same

product function in (c). To view the projection (the autocorrelation function) look at the page at right-angles to see CðyÞ plotted as a
function of y.
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All this relates to electron microscopy in the
following way. The initial function we load onto
the paintbrush is a one-dimensional quantum
mechanical electron wave function. In practice,
this would be something like the exit wave
function below the specimen in a transmission
electron microscope or perhaps the disturbance
over the back focal plane of the objective lens.
These functions would generally be two-dimen-
sional, which means that our ‘wall’ would have to
be four-dimensional: for the purposes of clarity,
we will only consider one-dimensional functions,
although all the mathematical analysis that follows
can be trivially extended for two-dimensional
functions. By painting the wave function across
itself, we form the set of all possible interference
conditions with different parts of itself. The final
one-dimensional function, obtained by integrating
horizontally across the two brushstrokes, is called
the autocorrelation function.
Consider the case of holography, where we have

a reference wave which is independent of our
function of interest (image or diffraction pattern).
We can regard this as our paintbrush having an
errant bristle, a long way left or right of the main
part of the paintbrush, as shown in Fig. 2. This
errant bristle creates a narrow line of paint across
the wall. Where it crosses the second brushstroke it
is as if it picks out a profile of the original
function. When this is subsequently projected
horizontally, what we see is three regions: a central
broad region and two the so-called side-bands
(representations of the original function) either
side of this central region. Such side-bands occur,
for example, in the Fourier transform of a real-
space hologram, in which case the projected
function C(y) (see Fig. 2) would be an estimate
of the wave amplitude in the back focal plane of
objective, which is itself related to the image by a
forward Fourier transform propagator. The two
bushstrokes, one of which must formally be the
complex conjugate of the other, arises from the
fact that we only measure intensity in the image
plane. The main benefits of the paintbrush
construction is that this loss of phase, and all the
Fourier transforms, are dealt with simultaneously
by the pictorial representation. For this reason, we
can easily extend it into much more advanced

interference methods such as ptychography and
Wigner distribution deconvolution, which we
explain in Section 6.

3. The mathematical model

The electron wave function is a complex
variable. In other words, our paintbrush functions,
the surface of our wall, and the final projected
function must all be complex variables. Let the
two-dimensional surface of the wall be given by
the two-dimensional function w, wherein

wðx; yÞ ¼ uðx; yÞ þ ivðx; yÞ; ð1Þ
where i is the imaginary number and uðx; yÞ and
vðx; yÞ are real-valued functions of real co-
ordinates x and y which describe positions over
the wall. Alternatively, we could write

wðx; yÞ ¼ mðx; yÞexp ifðx; yÞ; ð2Þ
where

mðx; yÞ ¼ pðu2ðx; yÞ þ v2ðx; yÞÞ ð3Þ

Fig. 2. The representation of holography in the model. The

paintbrush has an errant bristle (the reference wave), so that

CðyÞ now clearly separates two reconstructions of the wave field
in the back focal plane, CðxÞ.
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is the modulus of wðx; yÞ and
fðx; yÞ ¼ tan�1ðvðx; yÞ=uðx; yÞÞ ð4Þ

is the phase or argument of wðx; yÞ.
There is no easy way to represent graphically

such a function, short of resorting to two contour
maps or two grey-scale images. In all the figures we
show in this paper, we will adopt the convention
that we will plot only the modulus of wðx; yÞ,
mðx; yÞ, as a grey-scale image: we just have to
remember that in this type of function also has
associated with it a phase, fðx; yÞ.
Let f ðxÞ be the one-dimensional complex func-

tion which we apply to our paintbrush. Remember
that we will use this function to represent a one-
dimensional time-independent electron image, exit
wave or diffraction pattern: exactly which plane of
the microscope it represents will depend upon the
various contexts described in the next section. We

can plot this conventionally as in Fig. 3a, using a
solid line to represent the real part, uðxÞ, and a
dotted line to represent the imaginary part, vðxÞ. If
we make our first brushstroke at 458 to vertical
(Fig. 1), then we have

wðx; yÞ ¼ f ðx� yÞ: ð5Þ

Fig. 3b shows wðx; yÞ plotted as a surface
embedded in a three-dimensional space (for
clarity, only the modulus, mðx; yÞ is shown).
Along the x-axis (i.e. along y ¼ 0), we see simply
f ðxÞ plotted as a function of x. Meanwhile, along
the y-axis (i.e. along x ¼ 0) we see the same
function again, this time plotted as a function of y,
but reversed with respect to the sense of the axis.
In other words, wð0; yÞ ¼ f ð�yÞ. In Fig. 3c we see
a grey-scale plot of wðx; yÞ, where the darkness of
the image corresponds to the magnitude of
wðx; yÞ. All points in this image which lie on a

Fig. 3. (a) Conventional representation of the one-dimensional function f ðxÞ, the solid line being the real part, the dotted line being the
imaginary part. The modulus, mðxÞ, is shown in the lower graph. (b) The corresponding paintbrush function shown as surface, where
height represents the modulus of the paintbrush function. (c) The same paintbrush function plotted (as in the rest of this paper) as a

grey-scale plot, with dark tones representing high numerical values of the modulus.
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diagonal parallel to x ¼ y have the same value.
This is a single paintbrush function. More
generally, we could write

wðx; yÞ ¼ f ðx� ay� bÞ; ð6Þ

where a and b are constants which define the
gradient (1/a) and position of the paintbrush
stroke.
In order to form the product paintbrush

function described in Section 2, we need to form
the product of two brushstrokes that cross over
one another. We can write this as

wðx; yÞ ¼ f ðx� yÞf �ðxþ yÞ; ð7Þ

where f � represents the complex conjugate of
the function f. In Section 2, we did not worry
about the complex conjugate, although it is crucial
when f is complex. It arises from the fact that we
wish wðx; yÞ to represent a set of possible
interference conditions available to us experimen-
tally. Since these are all measured in intensity (real
numbers relating to quantum mechanical prob-
abilities) then we will only encounter terms
involving the original wave function times its
complex conjugate.
The final step of the construction is to reduce

wðx; yÞ into the one-dimensional function by
integrating horizontally. We will end up with a
function of y only, because we have integrated
over x, which we could write as

CðyÞ ¼
Z

wðx; yÞ dx ð8Þ

If we want to retain the scaling between our
original function f ðxÞ and our final function CðyÞ,
we have to use a modified version of Eq. (7): what
we have to do is alter slightly the angle of each
brushstroke. Think of the example of holography
(Fig. 2). For most combinations of brushstroke
angle, the side bands of the projected function
CðyÞ will be stretched or squeezed relative to the
original f ðxÞ. In all real experimental situations
this scaling factor will indeed occur: it is the
magnification or camera length of the electron
microscope, but for the purposes of symmetry and

elegance, let us define CðyÞ as

CðyÞ ¼
Z

wðx; yÞ dx

¼
Z

f ðx� y=2Þf * ðxþ y=2Þ dx; ð9Þ

where we have chosen gradients of 2 and �2 for
the paintbrush functions. CðyÞ so defined is called
the autocorrelation function. We can shear our
paintbrush functions left or right without affecting
the result CðyÞ so, for example, the autocorrelation
is often written

CðyÞ ¼
Z

f ðxÞf * ðxþ yÞ dx ð10Þ

via a simple substitution for x, equivalent in our
picture of forming one vertical brushstroke,
followed by one at 458 (Fig. 4). The autocorrela-
tion is sometimes defined as the complex conjugate
of Eq. (10) – see the appendix.

4. Some simple applications

4.1. Young’s slits

Consider Young’s slits experiment (Fig. 5).
Instead of having two identical empty slits, let
each slit have a modulus and a phase: the modulus
of a slit corresponds to the fraction of electrons it
transmits and the phase could be introduced by
having a potential well or phase plate within the
slit. When illuminated by a coherent plane wave,
we have a wave function in the exit plane of the
slits, say CðxÞ, which consists of two spikes with

Fig. 4. We can shear the brushstrokes left and right,

corresponding to the substitution of the variable of integration

in Eqs (9) and (10), but this causes no difference in the

horizontal projection, CðyÞ.
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complex amplitudes which we will call B and C,
represented graphically within Fig. 6. (We ignore
time-dependent factors of eiwt in the wave func-
tion, because when we come to detect an
interference phenomenon these factors cancel via
their complex conjugates.) This is the most
elementary spatially resolved wave function we
can imagine. Our aim is to measure CðxÞ: i.e. to
measure the position and complex amplitudes of
the two spikes.
Suppose that all we are able to do is to measure

the intensity of the far-field Fraunhofer diffraction
fringes. In other words, we are allowed to measure
the intensity of the Fourier transform of our exit
wave. Not surprisingly, some information is lost in
the process. We can measure four things from the
interference fringes: their total intensity summed
up over the entire Fraunhofer plane, which is
proportional to B2+C2; the periodicity of the

fringes, which tells us the separation of the slits
(but not their absolute position); the displacement
of the fringe pattern relative to the optic axis,
which tells us if there is a phase difference between
the complex values of the two slits; and the
depth of the interference fringes, which tells about
the magnitude of the product BC relative to
B2+C2.
The same information can be obtained by taking

the Fourier transform of the fringes. The process
of recording the intensity of the fringes has
destroyed the phase information in the wave field.
Obviously, if we were able to record the full
amplitude and phase of the diffraction pattern,
then a single back-Fourier transform would yield
the exit wave from the slits, because the Fourier
transform, whether performed physically as a
result of the Fraunhofer propagator or as a
computation, preserves information. Taking the
Fourier transform of the intensity of the diffraction
pattern, which we can think of as the next best
thing, yields the autocorrelation function (see the
appendix: note that in some contexts the auto-
correlation is defined as the back-Fourier trans-
form of the intensity function), as expressed by the

Fig. 5. Young’s slits experiment. The exit wave propagates to

the far-field where it forms an intensity pattern corresponding

to the usual fringes. The fringes may be shifted laterally if there

is a phase difference between the wave disturbances at the exit

of the slits.

Fig. 6. The paintbrush function for Young’s slits. The exit

wave function consists of two spikes with unknown complex

values B and C. There are four points of non-zero amplitude in

wðx; yÞ. The Fourier transform of the intensity of the fringes
lying in the Fraunhofer diffraction plane yields the autocorrela-

tion function, CðyÞ, consisting of three peaks.
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model described in Section 2 and by Eqs. (9)
or (10).
So, for our two slits, this entire process–wave

propagation into the Fraunhofer plane; the
measurement of intensity in that plane; and the
Fourier transformation of that intensity–is all
represented by the single paintbrush stroke dia-
gram shown in Fig. 6. It is as if our paintbrush
only has two bristles, of complex value B and C.
The height of the central peak in the autocorrela-
tion function is B2+C2; the position of both side
peaks occurs at the same distance as the separation
of the slits; and the heights of these latter peaks
give terms like jBCj exp iðfB � fCÞ, or the com-
plex product BC�. The symmetry of the auto-
correlation function means that only one-half of it
gives relevant data, because the Fourier transform
of any real function (the measured intensity) is
complex-conjugate symmetric.
But notice that if we have try to solve for the

complex values of B and C from just the
autocorrelation function (which we leave as an
exercise for the reader), we find we have lost
crucial information in this experiment: given only
the autocorrelation function, we are unable to tell
which slit has which modulus. (Of course, we have
also lost the absolute phase of the wave function,
but since we are not interested in time dependence,
this is irrelevant.)
Before proceeding to more complicated scatter-

ing geometries, the reader should note that in
this very simple case, we could measure the whole
of wðx; yÞ for the two slit problem by being
allowed to perform a second experiment.
If we were able to place a photographic film in
the plane of the slits, or indeed in a magnified
image of the slits, we would be able to measure
A2 and B2 separately. We would therefore have
been able to separate the lateral components of
wðx; yÞ, at least along y ¼ 0, instead of simply
projecting them into a one-dimensional function.
Given the entirety of wðx; yÞ, it always possible to
solve for the underlying paintbrush function,
except for the usual loss of absolute phase. Indeed,
this is exactly why the paintbrush function is a
useful model because it allows us to see where
extra information can be extracted from a scatter-
ing experiment.

4.2. The general phase problem

In diffraction theory, the autocorrelation func-
tion defined in Eq. (10) is called the Patterson
function [1]: the Fourier transform of the dif-
fracted intensity. In the case of a crystalline
specimen where every peak can be recorded, it
renders the autocorrelation of the unit cell in real
space. When we replace the Young’s slits with a
complicated wave scattered from a large specimen,
then it becomes apparent that the autocorrelation
function cannot let us solve easily for the value of
some general CðxÞ. Cross-terms superpose upon
one another as we do the projection in the wðx; yÞ
plane. CðyÞ does not contain enough independent
measurements to solve for CðxÞ. The intractability
of this general phase problem is mitigated when
posed in two or three dimensions because of
geometric constraints: other a priori information
(such that the scattering medium is composed of
discrete atoms, or the unit cell has a single heavy
atom at a known location) can also render the
problem soluble for many crystalline materials.
Note that for large amorphous specimens, the
diffraction pattern cannot generally be recorded at
high enough angular resolution in order to capture
all the necessary intensity information, and hence
only average atomic spacings (the pair correlation
function) can be inferred.

4.3. Holography

The holographic solution to phase problem has
already been discussed informally in Section 2. A
delta function can be added to the plane of CðxÞ
displaced some distance away from the amplitude
we are interested in. Our autocorrelation function
now looks like Fig. 2, and consists of a central
peak, where many cross-terms overlap, as in the
classic phase problem, and two side-lobes which
are complex-conjugate symmetric. In the region of
the side-lobes, we find amplitudes corresponding
to terms like RC� and R�C, where R is the
amplitude of the delta-function component of the
wave. Within these side-lobes, values of x in CðxÞ
project directly to values in y in CðyÞ except for a
constant offset determined by the separation of the
reference wave. Ignoring this offset, and assigning
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R to be unity and of zero phase, we can write very
loosely that

CðyÞ ¼ Cð�xÞ ¼ Cð�yÞ
for values of y within the upper lobe and

CðyÞ ¼ C* ðxÞ ¼ C * ðyÞ
for values of y within the bottom lobe:

The reference wave has therefore cleanly separated
out an estimate of CðyÞ which is equivalent to
CðxÞ, and which is what we want to measure.
There are many different ways of setting up an

actual holographic experiment. The most com-
monly employed is to have a beam splitter near an
image plane of the microscope, say at the selected
area diffraction aperture. This serves to deflect
in angle an unscattered region of the wave field
with respect to that part which has passed through
the specimen. In the final image plane (at
the phosphor screen, film or CCD camera) the
deflected beam crosses over those beams which
have passed through the specimen and are destined
to form the conventional image: their interference
creates the hologram. If one could look up the
column from the image plane, one would see
the back focal plane of the objective split into two
parts: the amplitude distribution diffracted from
the specimen (the intensity of which corresponds
to the conventional selected area diffraction
pattern), and the reference beam, far off to one
side (Fig. 7). This plane, the back focal plane of
the microscope (albeit modified by the effects of
the beam splitter) corresponds to the plane of the
slits in Section 4.1. The hologram, corresponding
to the interference fringes, is what we record in
intensity in the image plane. Our real and
reciprocal space co-ordinates have therefore
swapped roles relative to the previous examples,
but the effect is the same because two planes are
still separated by one Fourier propagator. The
Fourier transform of this image (often called the
diffractogram) is therefore the autocorrelation
function of the back focal plane. In practice, in
order to obtain the complex value of the exit wave
field from the specimen, one must slice out one
side-lobe of the diffractogram; if necessary, multi-
ply it by a phase alteration that accounts for any
lens aberrations present in the objective lens; and

then Fourier transform it back. However, for
purposes of our discussion, everything of impor-
tance is expressed within our simple paintbrush
model: the strength of holography is that it
separates the intensity cross-terms so that in some
other plane (in this case, lying in the back focal
plane) a clean estimate of the complex wave field is
available. Where this wave field actually resides
(whether in real space, reciprocal or somewhere in
between like the region of Fresnel diffraction that
occurs as a function of defocus below the speci-
men) is irrelevant, provided we know what the
propagator is involved to get us to the actual plane

Fig. 7. Electron holography: The paintbrush function depicted

in Fig. 2 represents how the Fourier transform of a hologram

corresponds to the amplitude in the back focal. beams from the

conventional image (top diagram) would meet at a focus in the

image plane (dotted line). The reference beam interferes with

these at an angle, causing high-frequency interference fringes.

The effective amplitude in the back focal (middle diagram), as it

would be seen looking up the column from the image plane. The

diffractogram amplitude, C(y), is shown in the lower diagram.

Compare with Fig. 2.
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of interest, say the exit wave field. Indeed, all sorts
of other holographic geometries are available [2],
but the principle of separation is always the same.

5. Apertures and probe functions

So far, we have not made much use of wðx; yÞ,
the two-dimensional function formed by the
paintbrush functions. As far as the conventional
phase problem is concerned, Eq. (9) expresses
everything we need to know about the conse-
quences of measuring intensity after a Fraunhofer
propagation. However, in the context of micro-
scopy, much more than simply the projection of
wðx; yÞ is accessible in a way which allows indirect
solution of the phase problem. Furthermore, if our
paintbrush function, CðxÞ, resides in reciprocal
space, then it becomes possible to extend the
domain or width of CðxÞ which is measurable, and
hence increase achievable resolution, even beyond
the so-called ‘information limit’ which arises from
the difficulty of interfering electron beams of very
different path length.
Let us return to the Young’s slit experiment.

Suppose we now have the opportunity of placing a
moveable aperture in the same plane as the slits. In
our one-dimensional analysis, the aperture is like a
top-hat function. Its paint product function
(Section 2) is just a diamond shape in wðx; yÞ
(Fig. 8a), which moves left and right as we move
the aperture. If the aperture was not a real
function, but also contained phase changes (which
for a real electron microscope lens aperture or
focussed electron probe this will always be the
case), then the effect would be to retard or advance
the phase of the complex numbers B and C which
lie on the exit wave from the slits: in other words,
we have to form the product of the slit function
and the aperture before allowing the waves to
propagate to the far field. So, for any one position
of the aperture, the exit wave field coming from the
slits and the aperture is simply the product of the
slit function and the aperture function. Let the
position of the aperture relative to the slits be
denoted by X. We now have a correlation
function, CðyÞ, for every position of the aperture
X. In other words, we can measure a two-

dimensional function Cðy; XÞ where
Cðy;XÞ ¼

R
Cðx� 1=2yÞC* ðxþ 1

2yÞ
Aðx� X � 1

2yÞA* ðx� X þ 1
2yÞ dx

ð11Þ

At this stage, understanding the consequences of
this equation is not easy without resorting to the
paintbrush analogy. We now have four paintbrush
strokes multiplied by each other, as shown in
Fig. 8. The CðxÞ and AðxÞ strokes are parallel to

Fig. 8. (a) An aperture function, AðxÞ, crosses over A�ðxÞ, to
form a diamond window within the wðx; yÞ space. This can be
moved left or right, thus isolating different sections of the

underlying Young’s slits paintbrush functions. (b) The complete

set of all CðyÞ functions, as a function of the aperture position,
X, a two-dimensional function we call Cðy; XÞ. The diamond
window in (a) has been convoluted with the four points in

wðx; yÞ, but there are regions where we can now measure
separately all these four values, thus resolving the phase

problem.
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each other, as are the C�ðxÞ and A�ðxÞ strokes,
which cross over the first two. We can think of the
AðxÞA�ðxÞ strokes on their own forming a
diamond shaped window in the space wðx; yÞ.
Shifting the aperture by (positive) X, shifts the
diamond shape to the right in wðx; yÞ. Cðy; XÞ
represents the set of all lateral projections of
wðx; yÞ for all aperture shifts X.
In the case of our Youngs’ slits, this new data set

looks like Fig. 8b. We have not quite extracted a
perfect representation of wðx; yÞ because the
aperture has finite width, especially at small values
of y, so that wðx; yÞ is convoluted by (or more
precisely, correlated with) the aperture function.
We noted above that in the case of the two slits, all
the ambiguities of the phase problem would vanish
given an independent measurement of modulus of
B and C, and indeed we now have provided this
information by use of an aperture function. The
aperture function can also be the impulse response
function of a lens system, as in the case of the
Wigner distribution deconvolution method when
applied to STEM microdiffraction data, as de-
scribed in the next section.

6. Resolution and the limits to interference

Interference phenomena are attenuated if the
source of the illumination is extended and/or when
normal experimental conditions apply: mechanical
vibrations, electric power supply instability, mag-
netic interference, earthing loops, etc. In the
Young’s slits experiment, the coherence of the
wave immediately behind the slits is most easily
sabotaged by having an extended incoherent
source at a finite distance from the slits, as
opposed to the usual illumination by a ‘coherent
plane wave’. Magnetic or power supply interfer-
ence could be modelled by time-varying phase
plates within the slits. Over a period of time, both
effects cause the superposition in intensity of
laterally shifted interference patterns; fine fringes,
corresponding to well-separated slits, are quickly
attenuated in these circumstances.
The exact degree of attenuation, or partial

coherence, as a function of fringe periodicity is a
complex issue [3]: in a microscope the propagation

and/or reduction of the coherence volume is a
function of the exact lens geometry employed and
its aberrations. However, the overall effect of finite
coherence simply reduces the width of the auto-
correlation function, so that wðx; yÞ or Cðy; XÞ
has a limited extent in the y direction (this is
sometimes called the r0 cut-off [4]). Put simply,
parts of the original wave which are well-separated
in space are hard to interfere coherently. When we
record a diffraction pattern, fine details are lost
because of a finite coherence width at the specimen
due to (usually) a finite source size. Similarly,
when we record an image intensity, fine atomic-
scale interference fringes are lost because of a finite
coherence width in the back focal plane of a
microscope due to (usually) lens instabilities and
magnetic interference.
We can understand this easily in the case of

holography. Very high frequency fringes in the
image plane are difficult to record. This means that
the side-bands often impinge upon the limits of the
wave coherence, as in Fig. 9. Because the wave
function we are attempting to solve for is in the
back focal plane of the lens, this cut-off limits the
extent of the Fourier transform of the real-space
image. In other words, it sabotages resolution in
the final image reconstruction. In fact using
holography as a means of improving resolution
faces more challenging problems associated with
the sampling necessary in reciprocal space in order
to account for the lens aberration function [5].
However, for a long time this limit to interference,
sometimes known as the information limit, was
regarded as the most intractable limit to improved
resolution, assuming that a deconvolution could

Fig. 9. The limits of coherence in the case of holography. The

heavy dashed lines represent a cut-off in the Fourier transform

of the image intensity, caused by partial coherence in the

illuminating beam and the effects of other instabilities.
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accommodate all the usual errors introduced by
the electron lens.

6.1. Ptychography beyond the information limit

Consider a wave function consisting of a series
of delta functions–a typical example being a
conventional selected area diffraction pattern
obtained in the back focal plane of the electron
microscope from a crystalline specimen. If we
introduce a small moveable (objective) aperture in
the back focal plane, just larger in diameter than
the width of the separation of the diffraction
peaks, then in principle we could form a data set
Cðy; XÞ that looks like Fig. 10d. The way we
would do this physically would be to measure a
series of images in a conventional TEM, each
taken with the objective aperture in a different
position. The Fourier transform of each image (the
autocorrelation function, or projection of the
paintbrush product function plotted as a function
of y) would then have to be arranged in Cðy; XÞ
along the X co-ordinate corresponding to the
position of the objective aperture.
This arrangement is far removed from Hoppe’s

original definition of ‘ptychography’ [6], but the
nomenclature is useful in that it is the shifting of
the aperture which resolves the conventional
ambiguities of the phase problem. Practically
doing the experiment in this way would be
exceedingly difficult and would not optimise the
best use of the transfer function of the lens. A
much more practical implementation is to use
STEM mode [7–10], where microdiffraction pat-
terns are collected as a function of probe position.
The important point about crystalline ptycho-

graphy is that, unlike holography or any other
reference wave methods, it demonstrates that it is
possible in principle to access the underlying form
of our function of interest CðxÞ, even if wðx; yÞ is
not very wide in the y direction due to the
limitations of the information limit. A little thought
will show we have enough information to solve for
the entirety of a paintbrush function, CðxÞ,
consisting of discrete bristles if we can measure
wðx; yÞ along y ¼ 0 and at least one further layer of
crossing brushstrokes at one further value of y (Fig.
10). Along wðx; 0Þ we have all the intensity

measurements jCðxÞj2. The next row of points has
terms like BC�, CD�, etc., where B, C, D, etc. are
the complex values of adjacent reflections, and
hence we can infer the relative phase of all the
peaks, even though doing this by holography in the
same instrument would be impossible (the inter-
ference term BF* shown in Fig. 10a is beyond the
coherence cut-off of the microscope).

Fig. 10. The ptychography data set: (a) We assume a discrete

set of points (in real or reciprocal space). Their amplitudes are

labelled B,C,D, etc. Terms like BF� are outside the information
limit, but finite coherence does not limit the width of wðx; yÞ in
the x direction [4]. An aperture diamond can be shifted across

the data set. (b) The aperture can select a single beam to

measure the intensity (and hence modulus) of each beam. (c)

The aperture can also select four points in wðx; yÞ, thus
establishing the phase difference between each pair of beams.

(d) The compete set of data for all aperture positions, X.

Compare with Fig. 8b. The principle of Wigner distribution

deconvolution is to deconvolve the blurring in the X direction,

even if the wave function is not composed of delta functions.
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6.2. Wigner distribution deconvolution

Ptychography is a special example in the case of
a crystalline specimen of a much more general
hypothesis that given Cðy; XÞ we can obtain an
exact estimate of wðx; yÞ even if the specimen exit
wave (or diffraction pattern) is a completely
general function and even though the information
limit is finite. All that we have to do is deconvolve
the diamond-shaped aperture function from
Cðy; XÞ. For every value of y, we can perform a
separate deconvolution of the correlation integral
in Eq. (9). We could do this by taking a Fourier
transform of the Cðy; XÞ in the y direction and
multiply it by a filter function, corresponding to
the Fourier transform of the width of diamond
function at that value of y, and then Fourier
transform back. The filtering therefore takes place
in a mixed real and reciprocal space co-ordinate
system wherein the filter function is of the form of
a Wigner distribution function. It can be shown
that since the data set has many redundant values,
it is possible to solve for both CðxÞ and AðxÞ
independently [10].
This method is moderately easy to implement

with light optics [11,12], but the electron case has
proved difficult to perform. The author’s own
experience suggests that in the case of STEM it is
exceedingly difficult to sample an ordered array of
probe positions across a two-dimensional speci-
men. The time taken to record each microdiffrac-
tion pattern is of the order of 25ms. Scanning a
reasonable field of view therefore takes tens of
minutes. Notwithstanding all the usual problems
of drift, contamination and damage, obtaining
repeatable measurements over such a grid is,
simply, very difficult. We developed various tests
for ensuring that our collected data were self-
consistent [13], but never managed to achieve this
consistency over a wide field of view.
Konnert and D’Antonio [14] were more success-

ful with a real space version of a similar technique,
although rather than performing an inverse
deconvolution, they optimised forward calcula-
tions of STEM microdiffraction data, until
the experimental data set was consistent with
the forward calculation. For the purposes of
the present discussion, what matters is to realise

that both these methods implicitly attempt to solve
for wðx; yÞ, despite the blurring effects of either an
aperture function or a focussed probe function,
and/or the restrictions of the information limit. As
detector technology progresses, it may soon
become tenable to read out and store a whole
diffraction pattern at much greater speed without
incurring high read-out noise.

6.3. The bright-field image

We now consider some important subsets of the
total scattering data set Cðy; XÞ. If X ¼ 0, we have
an aperture function which is lying centrally on
CðxÞ. Furthermore, if CðxÞ is a diffraction pattern
lying in reciprocal space, then the strip of data
corresponding to Cðy; 0Þ is the Fourier transform
of the conventional bright-field image, often called
the diffractogram. Since the advent of CCD
cameras, this is now routinely available in real
time. (Historically, the diffractogram was formed
by Fraunhofer diffraction through the micrograph
plate, which yields the intensity of the Fourier
transform of the image, whereas here we are
referring to the complex-valued Fourier trans-
form). Pictorially, the situation is as in Fig. 11a.
Remember, in an ideal world Cðy; 0Þ should
correspond to CðxÞ, which is the complex wave
field lying in the back focal plane. If that were the
case, then the diffractogram would be identical to
the complex wave field in the back focal plane of
the objective lens and the bright-field image would
show the complex specimen exit wave field. We
know that holography can achieve this trick by
having a remote reference beam which separates
out the two side-bands. How does it work in
bright-field imaging? The answer is ‘not very well,’
which explains why the bright-field image is a poor
representation of the exit wave function. However,
our model can serve to explain where the
difficulties arise.
The usefulness of the bright-field method

depends crucially upon the specimen being largely
transparent–a weakly scattering object–so that the
undiffracted beam at Cð0Þ is strong. We now
observe two strong lines in wðx; yÞ, Fig. 11.
Comparing this with the case of holography
above, we see that once again it is as if each
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paintbrush function is projected conformally onto
the CðyÞ, via a multiplication by the reference
wave, but that now the two components overlap.
If CðxÞ consists of a delta function at x ¼ 0 plus a
scattered amplitude CsðxÞ, which is very small
relative to unity, then

CðxÞ ¼dð0ÞþCsðxÞ; ð12Þ

where dð0Þ is a Dirac delta function, and we have
approximately

CðyÞ ¼ jdð0Þj2 þC�
s ð�yÞ þCsðyÞ: ð13Þ

It is not immediately obvious that the overlap of
the two side-lobes yields anything particularly
useful; this is despite the fact that the bright-field
image is often cited as a sort of holographic
reference-wave method. However, the First Born
approximation dictates that the scattered waves in
the back focal plane are proportional to the
Fourier transform of the atomic scattering poten-
tial in the specimen, and that they are p=2 out of
phase with the unscattered wave at cð0Þ. Further-
more, since the atomic potential is a real function,
its Fourier transform is complex conjugate sym-
metric, which leads us to conclude that for a thin
specimen

CsðxÞ ¼ �C�
s ð�xÞ: ð14Þ

Substituting into Eq. (8) then leads to rather
embarrassing conclusion that CðyÞ consists of
nothing but a delta function at y ¼ 0: the two
scattered terms cancel perfectly in complex ampli-
tude. The reason is obvious; if the specimen is
weak phase, then even though a rich and
complicated scattering function may exist in the
back focal plane, the image has zero contrast when
the aperture function AðxÞ is real, because only
the phase of the image has been altered and this
does not register at all on its intensity. Herein
lies the image phase problem. The conventional
solution is to introduce phase changes across
AðxÞ, in the form of aberrations or defocus,
which may suitably alter the phases of the two
scattered components so that they are strongly
expressed.
Even if the AðxÞ is of the form of a perfect phase

plate, so that the modulus of the two side-bands in
Fig. 11a add constructively, we can see that
amplitude in wðx; yÞ which lies off the two strong
lines can still add into the autocorrelation func-
tion, and hence its Fourier transform, the image.
This is effect is quite independent of dynamical
and three-dimensional scattering in the specimen
itself–it represents a failure of the lens function to
transfer a contrast which is proportional to the
(weak) phase of the exit wave field–sometimes
referred to as the breakdown of linear imaging
approximation.

Fig. 11. The paintbrush construction for the conventional

bright-field image. The diffractogram is a poor representation

of the amplitude in the back focal plane for two reasons.

Firstly, each side-band consists of two holographic overlaps

(compare with Fig. 2), and under the first born approximation

these would cancel each other out, but for a phase plate

introduced in the aperture. Secondly, cross-terms from regions

other than that of the strong reference beam can be expressed.

(b) Single side-band imaging and tilt-series reconstruction

methods shift the either wave function of interest or the

aperture window so as to cut out one of the overlaps in the side-

band. Resolution (extent of expressed information in the y

direction) is also doubled.
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6.4. Single-side-band imaging

The principle of single-side-band imaging is to
shift the aperture by exactly the right amount, as
shown in Fig. 11b, so as to more closely emulate
the clean separation of side-bands in holography
(Fig. 2). Now the autocorrelation avoids the
superposition of the two strong lines of inter-
ference in Fig. 11a, and gives an explicit measure
of CðxÞ, provided the cross-terms (i.e. those areas
which do not lie on the strong lines) are weak.
Because the two side bands do not overlap, one
pair being obscured by the aperture function, we
no longer have to induce artificially a defocus and/
or aberration term in order to get any contrast in
the image. If aberration is present, then in theory it
can now be deconvolved out by dividing the
autocorrelation function by the lens transfer
function. But, like holography, this strategy can
suffer from sampling difficulties in regions where
the complex transfer function has a steep phase
gradient.
The attraction of the technique is that it solves

the image phase problem without a beam-splitter
and doubles the attainable resolution. Remember
that large distances in CðyÞ correspond to high-
resolution information. By shifting the aperture
sideways relative to the bright-field case, twice as
much of the remaining side-bands become visible.
In practice, in order to avoid extreme lens
aberrations, CðxÞ (and not the aperture function
AðxÞ) is shifted by tilting the illumination of the
beam which shifts the back focal plane amplitude
relative to the optic axis. However, resolution is
still limited by the coherence width. Requiring an
aperture to be so near the transmitted beam-
inducing aperture charging that can be a serious
experimental problem. Using the lens so asymme-
trically also means that scattered pairs of beams
that lie on achromatic rings in the objective lens–
i.e. at equal radii from the optic axis where
fluctuations in the objective lens supply have equal
influence–tend to interfere more strongly.

6.5. Tilt-series reconstruction

A modification of the single-side-band image is
to take several such images with different angles of

tilt in the illuminating beam, in other words to
explore different strips of Cðy; XÞ at a finite
number of X. This is advantageous for a number
of reasons. When the image and back focal plane
are in fact two-dimensional, then the occluding
aperture at any one illumination tilt can cut out
significant sections of two-dimensional reciprocal
space. By tilting over a two-dimensional grid of
points, it becomes possible to fill in these
unmeasured areas. The same data is measured
several times, leading to the possibility of refine-
ment by least squares [15,16]. However, the
principle of the technique is the same as for
single-side-band imaging: it has the possibility of
doubling resolution provided the specimen is
reasonably weak.
The equations used in the tilt-series reconstruc-

tion literature are now complicated by the
introduction of the variable that we have called
X–the angle of tilt. To a first approximation
(ignoring three-dimensional propagation effects
in the specimen) tilt simply shifts the amplitude
of the scattered waves in the back focal plane,
whereas the objective aperture transfer function
remains stationary. This is equivalent to shifting
the CðxÞC�ðxÞ paintbrush strokes while leaving
the aperture brushstrokes AðxÞA�ðxÞ stationary.

7. Conclusions

The conventional Abbe theory of imaging
considers three planes related to one another by
Fraunhofer Fourier transform propagators: the
back focal plane is the Fourier transform of the
specimen exit wave; the image is the Fourier
transform of the back focal plane. The fact that
the detector lying in the image plane is only
sensitive to intensity is incorporated as a last step
in the analysis. In the present model, we build this
fundamental loss of phase as a first step. It is then
apparent that there exists an extensive data set,
which we call wðx; yÞ, consisting of all possible
pairs of interference combinations between any
part of the image (or diffraction pattern) and itself.
A holographic reference is an elegant way of
extracting a true representation of the original
wave function. However, in view of the model, and
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via the addition of moveable aperture or focussed
electron probe, all sorts of other possibilities
become available. In general, we can measure
a function I have called here Cðy; XÞ, which is
wðx; yÞ convoluted with a window function con-
structed similarly out of the intensity interference
terms of the probe or aperture involved. In the
general case, there is thus a solution to all the
limitations of interference and resolution in
electron microscopy. The two most favourable
routes to achieve higher resolution irrespective
of the limitations of the coherence width (informa-
tion limit) is to process many microdiffraction
patterns recorded in STEM or many tilted-
illumination images recorded in TEM.
However, having conceded that electron micro-
scopy may be more opportunely improved by
performing such multiple experiments, there may
be other geometries which could be used more
favourably, but which may not yield the conve-
nience of the conventional image. This should be
the subject of further work. In the meantime,
it is hoped that the model presented in this paper
may facilitate an easier understanding of these
complicated issues.

Appendix

The projection of the paintbrush functions
represents the autocorrelation function, which is
the Fourier transform of the intensity of a Fourier
transform of the original function. This result is
standard, but we include a proof for completeness.
Assume that all integrals are performed over infinity,
and the forward Fourier transform is defined as

FðuÞ ¼
Z

f ðxÞ expði2pxuÞ dx: ðA:1Þ

The intensity of F(u) is given by

jFðuÞj2 ¼ FðuÞF * ðuÞ ðA:2Þ
which substituting from Eq. (A.2) gives

jFðuÞj2 ¼
Z

f ðxÞ expði2pxuÞdx



Z

f * ðzÞ expð � i2pzuÞ dz; ðA:3Þ

where we have changed the variable of integration in
F*(u). Compounding the integrals we have

jFðuÞj2 ¼
Z Z

f ðxÞf * ðzÞ expði2puðx� zÞÞ dx dz:

ðA:4Þ
Let the forward Fourier transform of jFðuÞj2 be

CðyÞ ¼
Z

jFðuÞj2 expði2puyÞ du ðA:5Þ

so that substituting from Eq. (A.4)

CðyÞ ¼
Z

f ðxÞf * ðzÞ expði2puðx� zþ yÞÞ dx dz du

ðA:6Þ
The functions f ðxÞ and f �ðyÞ do not depend on u, so
we can integrate over u noting that

R
expði2puwÞdu

¼ 0 unless u ¼ 0, at which point it has infinite value
and so therefore acts as a Dirac delta function dðuÞ,
so that

CðyÞ ¼
Z Z

f ðxÞf * ðzÞdðx� zþ yÞ dx dz; ðA:7Þ

which has zero value unless z ¼ xþ y, and so
integrating over z gives

CðyÞ ¼
Z
f ðxÞ f �ðxþ yÞ dx ðA:8Þ

as in Eq. (10) in the main text.
Note that in many contexts in diffraction

physics the autocorrelation is defined as the back
Fourier transform of the intensity, in which case
we have (x–z–y) in the exponential of Eq. (A.6),
leading to an alternative definition

CðyÞ ¼
Z
f �ðxÞ f ðxþ yÞ dx ðA:9Þ

which is equivalent to a reversal of the of the y co-
ordinate.
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