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Experimental data collected in a scanning transmission electron microscope (STEM) is used to obtain an image of the 

specimen at twice the conventional resolution determined by the size of the objective aperture. The measured data also 

provide a robust estimate of the quality of the reconstruction, determining such variables as specimen drift, defocus in the 

objective lens, source coherence and mechanical instability 

1. Introduction 

We aim to improve the resolution of the elec- 
tron microscope without recourse to further re- 
duction of the electron wavelength or the spheri- 
cal aberration constant of the objective lens. It 
has been shown both theoretically [l-3] and ex- 
perimentally on the optical bench [4,5] that if a 
sufficiently redundant data set is processed con- 
sisting of either (i) all coherent microdiffraction 
patterns available in the scanning transmission 
electron microscope (STEM) collected as a func- 
tion of many equally spaced probe positions, or 
(ii) all coherent bright- and dark-field images 
available in the conventional transmission elec- 
tron microscope (CTEM) collected as a function 
of many equally spaced illumination-angle condi- 
tions, then it is possible to remove all the degrad- 
ing transfer characteristics of the objective lens 
and solve for the exist wavefunction from the 
specimen in complex amplitude at much im- 
proved resolution. In this paper we present initial 
results from a STEM implementation of the 
method, and show that when the specimen is 
weakly scattering, we can easily observe an equiv- 
alent to the conventional contrast transfer func- 
tion (though now in four dimensions) and thus 
test for the experimental parameters such as 
specimen drift, lens defocus and source coher- 
ence. In theory, we can obtain an unaberrated 

image without any knowledge of defocus, spheri- 
cal aberration or astigmatism present in the ob- 
jective lens. However, reliance on the particular 
theoretical nicety which gives this “lens-insensi- 
tive” solution may be rather hazardous because it 
assumes the objective lens is well aligned with the 
optic axis, and it is also wasteful of electron 
counts. More satisfactory results may be obtained 
by performing a full Wigner distribution deconvo- 
lution [2]. The extreme redundancy in the mea- 
sured data allows for the more genera1 possibility 
of developing a robust, “user-independent” form 
of computational high-resolution electron mi- 
croscopy. 

2. Apparatus 

We employ a VG Microscopes HB501 STEM 
in the optical configuration shown schematically 
in fig. 1. 100 keV electrons (wavelength A = 0.0037 
nm> from a high-brightness field-emission gun are 
focused into a tight (though possibly aberrated) 
electron probe in the specimen plane by an objec- 
tive lenrt (spherical aberration constant of 3.1 
mm) which has a small (4-8 mrad semi-angle) 
objective aperture positioned in its back-focal 
plane. The transmitted electrons are brought to a 
focus at the slits of a magnetic spectrometer to 
remove those which have lost more than 1 eV, 
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and the resulting angularly resolved distribution 
is recorded on a TV-rate CCD camera (with an 
8-bit dynamic range) via a thin YAG scintillator 
bonded to an optical fibre, which also acts as the 
vacuum feedthrough. A set of three quadrupoles 
(usually employed for setting the energy disper- 
sion of the parallel EEL spectrometer) are used 
to alter the magnification of the distribution with 
respect to the pixel sampling in the CCD camera 
[6]. With this arrangement, we can adjust defocus 
and astigmatism in the objective lens by observing 
the shadow image and, at the same time, correct 
for the aberration figure of the spectrometer. A 
typical energy-resolved shadow image is shown in 
fig. 2 To improve the spatial coherence of the 
optics, we run the second condenser lens as high 
as possible (typically three coarse stops above the 
selected-area aperture cross-over>, but this set- 
ting must compete with the resulting loss of elec- 
tron counts. 

The crucial property of the processing method 
described below is that data are collected for 
many positions of the electron probe, each sam- 
pled from an evenly spaced grid of points in the 
specimen plane separated by a distance of the 
order of 0.1 nm. Our main experimental difficulty 
is specimen drift, which is typically of the order of 

objective aperture 

electron source 

Fig. 1. A schematic diagram of the STEM configuration used 

for the experiments. 

0.5 nm per minute, and so it is important that 
data are collected and stored quickly. In these 
preliminary experiments, we record the electron 
distribution on a 64 x 64 pixel frame, for 32 x 32 
probe positions in 80 s, during which the speci- 
men may drift significantly. We therefore drive 
the position of the probe via 16-bit D/A convert- 
ers which can be programmed to correct dynami- 
cally for a constant drift rate. Each microdiffrac- 
tion pattern is shifted in real time, via an Imaging 
Technology 151 frame-grabber, into the memory 
of a SUN workstation using a VME data bus. 
Before being written to disc (when the experi- 
ment is completed), each microdiffraction pattern 
is summed into 32 x 32 pixels, to avoid uneven- 
ness in the interlaced TV signal. All experiments 
are duplicated (the probe is immediately re- 
scanned over the same area, while collecting a 
second set of data) to check both that the drift 
rate has not changed during the experiment and 
that the reconstruction is reproducible. 

The objective aperture was accurately aligned 
onto the optic axis by positioning it on the centre 
of zoom of the shadow image which is formed on 
the CCD camera when the probe is significantly 
defocused. Defocus was then finely adjusted until 
there was no obvious preferential movement in 
the shadow image while the probe was scanned 
slowly across the specimen. The reconstruction 
method employed below is not very sensitive to 
defocus. It can be helpful, though, to have some 
defocus, so that the contrast in the bright-field 
image can be used to estimate the drift rate. The 
specimen used in these experiments was thin 
amorphous carbon which may be presumed to 
contain a broad distribution of spatial frequen- 
cies, as often employed in the measurement of 
the conventional contrast transfer function [7]. 

3. Four-dimensional complex transfer function 

Following the nomenclature in earlier work 
[1,2], let p be a two-dimensional vector describing 
the position of the probe in the specimen plane 
and r ’ be a two-dimensional vector describing a 
position in the Fraunhofer diffraction plane (i.e. 
a particular CCD pixel in the microdiffraction 



plane). We have recorded a four-dimensional in- 

tensity data set which we call I M(r’, p) I ‘. If WC 
were to examine a slice through 1 M(r’, p) I ’ at 
constant r’, we would see a conventional image 
mapped out as a function of the probe position p. 
For example, if r’ = 0, we would see the conven- 
tional axial bright-field image. Now it is well 
known that the Fourier transform of a conven- 
tional image gives a “diffractogram” which indi- 
cates the band pass of the objective lens (assum- 
ing the specimen is a weak phase object). How- 
ever, now let us consider the set of all such 
diffractograms, namely the Fourier transform of 

lM(r’, p) I 2 with respect to the p coordinate. 
which we will call G(r’, p’), such that 

G(T’, p’) =/]AL’(,‘, p) I ’ exp( i2rrp *p’) dp, 

(1) 

where p’ is the reciprocal coordinate of p. The 
scaling between r’ and p’ will depend on the 
electron wavelength and the effective camera 
length of our experimental arrangement, but we 
will show below that this can be determined di- 
rectly from the data set itself. 

With reference to the conventional transmis- 
sion electron microscope (CTEM) literature, a 
tilted illumination diffractogram obtained when 
using an objective aperture and a thin specimen 
is known to give a magnitude distribution remi- 
niscent of two apertures displaced with respect to 
one another (see rcfs. [8,9] and the auto-align- 
ment literature, for example ref. [ 101). It should 
be emphasized that here we process the complex 
value of G(r), p’) (though note that G(r’, p’) = 
G*(r’, -p’)), whereas diffractograms have his- 
torically been recorded on the optical bench, thus 
yielding 1 G(r’, p’) I ‘. The reason these displaced 

Fig. 2. A typical energy-resolved shadow-image of evaporated gold islands on a carbon support film. The very intense region at the 

edge is caused by high-angle beams being mapped back to lower angles by the spectrometer aberration. The ust of an objective 

aperture blocks intense high-angle beams. and since we only process the zero-order micradiffraction disc we are not affected by the 

aberration figure. 
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apertures appear can be most easily understood 
as oblique incidence holography [ll], because the 
Fourier transform of the intensity of the conven- 
tional image is the autocorrelation of the wave- 
field in the back-focal plane, and so if the unscat- 
tered beam is strong (that is to say the specimen 
is weak phase) and tilted, the two sidebands 
become separated. Filtering one such sideband 
with the complex transfer function of the lens, 
and then Fourier-transforming back to the image 
plane, can give a double-resolution image in com- 
plex amplitude, as demonstrated by Hohenstein 
[12,13], provided one is confident that the lens 
properties are known accurately. However, in this 
experiment we have effectively collected all such 
possible illumination conditions, and this extra 
information can be used (i) to check the stability 
of specimen and microscope, (ii) to check the lens 
parameters actually contributing to the experi- 
ment, (iii) to check that the specimen really is a 
weak phase scatterer, (iv) to check the coherence 
properties of the source, and (v) if the specimen 
is strong (but still reasonably thin) to deconvolve 
via the Wigner distribution method [21. 

Let us first assume that the specimen is weak, 
so that under plane wave illumination conditions, 
the wavefield at the exit surface of the specimen 
would be 

ICI(r)=l-if(r), If(r)1 <I, (2) 

where r is a two-dimensional vector in the speci- 
men plane, and where f(r) is real, much smaller 
than unity, and is proportional to the projected 
atomic potential (see, for example, ref. [14]). For 
some general r,N?), M(r’, p) is given by a convo- 
lution of the coherently illuminated aperture 
function lying in the back-focal plane of the lens, 
which we denote A(r’), with W(r’) the Fourier 
transform of r,Nr), such that 

I M(r’, p) I 2 

=/jA(b’)!P(r’-b’)A*(c’)?P*(r’-c’) 

Xexp[i2rp .(b’-c’)] db’ dc’, (3) 

where the probe position p has been explicitly 
included, and b’ and c’ are the dummy variables 

of the convolution. A(r’) may be a complex 
quantity, depending on aberration, astigmatism 
and defocus. If 4(r) satisfies (2), P(r’) is of the 
form 

P(r’) =S(r’) + y\(r’), (4) 

where 6(r’) is a delta function representing the 
unscattered beam, and !PJr’> is the scattered 
wave given by 

!Ps(r’) = -iF(r’), (5) 

where F(r’) is the Fourier transform of f(r) 
defined as 

F( r’) = /f(r) exp(i2rr - r’) dr. (6) 

It is useful to note that, because f(r) is real, 
F(r’) = F*(-r’), and hence 

PS(r’) = -TP?*( -r’). (7) 

From eqs. (l), (3) and (4), for a weak phase object 

G( r’, P’) = I A( r’) I 26( p’) 

+A(r’)A*(r’+p’)W,*( -p’) 

+A*(r’)A(r’-p’)qs(p’), (8) 

where we have ignored cross-terms between the 
scattered parts, !P& r ‘>. 

If the function A(r’) has a circular stop (the 
objective aperture), of semi-angle a, then G(r’, 
p’> contains significant magnitude in the regions 
illustrated schematically in fig. 3. Fig. 3a is a plot 
through G(r’, p’) along one component of the 
two-dimensional vector r’ and the corresponding 
parallel component of p’, the remaining compo- 
nents of both r’ and p’ being zero. A plane 
through G(r’, p’) for constant r’ (represented by 
a vertical line in fig. 3a) will have the form 
illustrated in fig. 3b, the tilted beam diffrac- 
togram discussed above. As r’ increases, the two 
circles in the diffractograms, which are plotted as 
a function of p’, are seen to separate. Mean- 
while, the magnitude of a plane represented by a 
horizontal line in fig. 3a (i.e. G(r’, p’> plotted as 
a function of r’ for a constant value of p’) will 
have significant value where the fixed central disc 
(the superposition of the A(r’) and A*(r’) terms 
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m q~$ transferred with unity magnitude 

m yy, transferred with between zero and double magnitude 

Fig. 3. Regions of significant magnitude in G(r’, p’): (a) along 

corresponding parallel components of r’ and p’, the remain- 

ing components of both r’ and p’ are zero; (b) as a function 

of p’ for a constant r’; Cc) as a function of r’ for constant p’ 

(1 p’( < a); (d) as a function of r’ for constant p’ tn < ( p’ 1 < 
2fY). 

in eq. (8)) is overlapped by two other discs (the 
Atr’ + p’) and A(r’ - p’) terms in eq. (8)) which, 
as p’ increases, will be seen to move apart from 
one another, as shown in figs. 3c and 3d. We call 

these shapes “aperture offset functions”. In fact, 
when these two outer discs overlap each other at 
small values of p’, they may contain regions which 
transfer qS(r’) with between zero or double am- 
plitude depending on the exact phase of the 
objective lens transfer function, Atr’). For exam- 
ple, for a perfect lens (no phase change across 
the aperture) 9>*( --r’) cancels with ‘P?:(r’) in the 
overlap region because of eq. (7). It is well known 
that in conventional bright-field phase-contrast 
imaging, it is ideal that the transfer function 
should introduce a r/2 phase change into both 
the scattered terms in order that they are ex- 
pressed with double amplitude in the Fourier 
transform of the image. 

The reconstruction method described below is 
easiest to perform when the second two terms in 
eq. (8) do not overlap. In fact, even if there is no 
aperture, these terms can be separated because 
the attenuation of the transfer function can be 
used as an effective aperture. However, the opti- 
mal conditions for this separation is an intricate 
function of defocus and the CCD pixel size in the 
microdiffraction plane, and so will be the subject 
of further investigation. We report here the main 
characteristics of G(r’, p’) only in the simpler 
case in which an objective aperture is used. 

Fig. 4. (a, b) Axial bright-field images recorded consecutively. Note that the data set has been windowed in all the p planes to 

reduce edge effects in its Fourier transform G(r’, p’). The greyscale spans the range 0.7 (black) to 1 .O (white). 
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4. Self-consistency tests on the experimental data 

We now demonstrate that all the above fea- 
tures can be observed directly in the experimental 
data and can be used to test various alignment 
parameters in the microscope. Fig. 4 shows two 
conventional bright-field images, i.e. two sets of 
the data I M(0, p> I ‘, recorded consecutively, as 
described above. The sampling in real space was 
0.19 nm, the objective aperture used was 25 pm 
(a semi-angle of 4 mrad), hence the total field of 
view was 6.1 nm, with a nominal resolution of 
0.93 nm. We may infer from the similarity of 
these two images that the specimen has not drifted 
with respect to the notional position of the probe 
(though in fact in these particular data we were 
compensating in real time for an actual drift rate 
of 0.3 nm per minute). Fig. 5 shows the central 
disc from one particular microdiffraction pattern, 
namely a slice through I M(r’, p) I 2 at one partic- 
ular p, displayed as a function of r’. Now let us 
take a Fourier transform with respect to p and 
look at the magnitude of slices in G(r’, p’>, 
plotted as a function of r’ at increasing values of 
constant p’ (figs. 6a-6c). The aperture offset 

Fig. 5. The central (zero-order) disc from one particular 

microdiffraction pattern, i.e. a plot of I M(r’, p)I ’ as a 
function of r’ at constant p. 

functions are clearly visible. Of course, they do 
not occur at all values of p’ with equal strength 
because they depend upon the amplitude of the 
corresponding value of P&p’), but for an amor- 
phous specimen, they appear in most regions of 
G(r’, p’). 

We have observed that if the experimental 
conditions are unfavourable, the aperture offset 
functions are distorted, or simply not visible, and 
may therefore be used to determine the following 
experimental parameters. 

Relative sampling: Scaling the position of a partic- 
ular CCD element in r’ to the reciprocal of 
probe movement p’ is experimentally rather diffi- 
cult. Depending on the specimen height, stray 
magnetic field from the objective lens alters the 
effective camera length between the specimen 
and the spectrometer. This is further exacerbated 
by our use of quadrupoles to demagnify the pat- 
tern after the spectrometer. However, simply by 
observing the relative movement of the aperture 
offset functions, we immediately obtain an accu- 
rate calibration of r’ to p’, without any knowl- 
edge of the camera length or even the electron 
wavelength. 

Distortions in sampling: If the microdiffraction 
plane is rotated relative to the probe scan coils, 
the aperture offset functions in figs. 6a-6c are 
systematically rotated throughout G(r’, p’). We 
have found that we normally have to correct for 
this computationally (by performing a rotated in- 
terpolation), firstly because the “rotate” adjust- 
ment on our HB501 is somewhat coarse, and 
secondly, aligning the scan by eye via a defocused 
shadow image (by observing the direction of its 
movement as the probe performs a line scan) is 
highly sensitive to any residual astigmatism. Any 
distortions in the microdiffraction plane caused 
by unequal excitations of the quadrupoles are 
easy to observe if one (perhaps rashly) assumes 
the objective aperture is circular. Continuous 
specimen drift stretches and distorts the sampling 
in p, and this manifests itself as aperture offset 
functions in r’ that move at different rates as a 
function of p’ in orthogonal directions. More 
catastrophic failures in sampling, such as a jump 
in the specimen position due to charging, or 



accelerating specimen drift, give highly distorted 
and blurred aperture structures. 

Lens dejkus und uperture positiorl: The magni- 
tude of the separated aperture features shown in 
fig. 6 are unaffected by phase changes across 
Atr’). (Strictly speaking, this is only true if the 
pixel size in r’ is negligibly small. Finite pixel size 

is equivalent, via reciprocity. to beam divergence 
in CTEM. which causes an attenuation in the 
transfer of high spatial frequencies.) However, 
the smoothness of the phase of the separated disc 
features shown in figs. 6b and 6c gives a very 
good indication of whether or not the probe was 
well focused during the experiment. A rapid phase 
change across Atr’), caused by spherical aberra- 

Fig. 6. Plots of IG(r’, p’)l as a function of r’ for various p’ values. The aperture offset functions can he seen to separate and 

move apart. (a) 1 p’ I = O.hru; (h) / p’ 1 = l.‘ru: Cc) I p’ I = l.Sru. 
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tion or defocus, manifests itself as a phase gradi- 
ent across the pairs of aperture terms in eq. (8). 
(We note in passing that corresponding points 
inside the two parts of the aperture offset func- 
tions are always rr out of phase if the specimen is 
weak, via eqs. (7) and (8), as can be seen in fig. 8b 
which is discussed later.) In fact, assuming the 
specimen is weak, exploiting the full dimensional- 
ity of our data will almost certainly uniquely 

define the lens parameters, for example by per- 
forming the type of analysis suggested by Typke 
and Kiistler [9], or more generally for a strong 
object and arbitrary lens function, by solving the 
blind deconvolution problem iteratively [15,16]. 

Source coherence: The magnitude of the signal in 
the offset aperture functions at high values of p’ 
gives a measure of the total source coherence, 

Fig. 7. Reconstructed images from the two consecutively recorded data sets whose bright-field images are shown in fig. 4. The 

magnitude greyscale (a and c) spans the range 0.8 to 1. The phase greyscale (b and d) spans the range -0.16 to 0.13. (a) Magnitude 

of reconstruction 1. (b) Magnitude of reconstruction 2. (c) Phase of reconstruction 1. (d) Phase of reconstruction 2. 
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because this indicates how strongly a particular 
spatial frequency was able to interfere with the 
unscattered beam. At points situated in the cen- 
tres of the offset aperture functions, lens instabil- 
ity terms cancel (for reasons described below), 
and thus this gives, for a particular specimen, a 
relative measure of the source coherence func- 
tion, assuming we have tested and removed the 
sampling errors described above. An absolute 
measure could be made if we calculate the 
strength of the specimen scattering function, 
which of course is implicit in the data itself: it 
may be obtained in principle by deconvolving the 

plane G(r’, 01, the conventional incoherent 
CBED pattern, with the intensity profile of the 
aperture function. 

5. Double-resolution reconstruction 

With reference to fig. 3a, we note that signifi- 
cant data has arrived in G(r’, p’) at values of p’ 
which are at twice the spatial frequencies of the 
maximum transfer which would normally arrive in 
the conventional bright-field image. We may think 
of this in terms of oblique incidence holography, 
via fig. 3b, in which case we observe that in tilted 
illumination a more extensive region of the 
Fraunhofer diffraction pattern of the specimen 
lying in the back-focal plane is passed through 
the usable region of the objective lens. Alterna- 
tively, we can think in terms of coherent conver- 
gent-beam electron diffraction (CBED), via figs. 
3c and 3d. A particular periodicity in the speci- 
men will scatter a diffracted disc to some point 
r’. As the probe is moved, there will be interfer- 
ence within the regions of overlap between this 
disc and the zero-order disc. If we observe the 
Fourier transform of the microdiffraction plane 
at the maximum value of p’ where significant 
transfer occurs, we see information from scat- 
tered discs that lie in the CBED at up to twice 
the radius of the objective aperture. It should be 
emphasized that the data shown in fig. 6 is from 
an amorphous specimen; there is no actual crys- 
talline disc observable in the diffraction plane. 
The sharply defined region merely indicates 

where diffraction information corresponding to a 
particular spatial frequency has been expressed 
within the zero-order disc. The electrons which 
contributed to G(r’, p’> for I p’ I close to 2cu 
were scattered through an angle of 2a, and can 
thus provide information at twice the conven- 
tional resolution. 

There are a number of ways we can obtain an 
improved resolution image from this data. The 
simplest is to note that along a line p’ = 2r’ in 

G(r’, p’), any symmetric phase &urges across 
A(r’) such as defocus, astigmatism and spherical 
aberration cancel out, via the complex conjugates, 

at least beyond a third of the maximum value of 
p’. This is similar to noting that two-beam inter- 
ference micrographs in CTEM, formed by passing 
the unscattered and scattered beam down oppo- 
site sides of the optic axis, are generally much 
easier to observe than genuine high-resolution 
contrast, because they are insensitive to the trans- 
fer function. In this case, however, because we 
have effectively measured all such pairs of beams, 
we can construct an estimate of *(r’) by putting 

P( P’) = G( p’/2, P’) 7 (9 

and then transforming back to give t),(r). Such 
reconstructions, from the two data sets for which 
the bright-field images are shown in fig. 4, are 
shown in fig. 7. The existence of aperture offset 
functions for p’ vectors parallel to both the fast- 
and slow-scan directions is evidence of the consis- 
tency of the data sets, and the similarity between 
figs. 7a and 7b and figs. 7c and 7d demonstrates 
the reproducibility of the reconstruction. A more 
thorough use of the data, which uses all the 
scattered power in G(r’, p’), while accounting for 
distortions in the objective lens, and which can 
also cope with the specimen being strongly scat- 
tering, is to Fourier-transform G(r’, p’) with 
respect to r, forming N(r, p’>, where it may be 
Wiener-filtered by a Wigner distribution depen- 
dent on A(r’), as described elsewhere [l-3]. For 
a weak phase object, the deconvolution effec- 
tively amounts to an integration of all scattered 
amplitude in the aperture offset functions after 
taking account of the phase across A(r’). 
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6. Conclusions 

The actual resolution achieved in the recon- 
structions shown in fig. 7 (0.46 run) is not particu- 
larly impressive compared to state-of-the-art 
high-voltage electron microscopes (typically 0.17 
nm). The important thing to note, however, is 
that this resolution has been obtained with an 
optical arrangement which has a “conventional” 
resolution of only 0.93 nm, because we have used 
a relatively small objective aperture. We have 
also performed these experiments with a stan- 
dard objective aperture (semi-angle of 8 mrad), 
which has a conventional resolution of 0.46 nm. 
This data can produce rather convincing double- 
resolution (0.23 nm) reconstructions. Consecutive 
experiments performed from the same region of 
specimen appear promisingly similar, but we re- 
frain from publishing them here because they do 
not fulfill the self-consistency tests described 
above. The aperture features are definitely visible 
at some quite high values of I p’ 1 (see the exam- 
ple in fig. 8). In fig. 8 the phase shows the shape 
of the aperture overlap function more clearly; the 
r difference between the two parts (discussed 
earlier) can also be seen. The aperture overlap 
functions for other values of p’ are often dis- 
torted and rarely occur in the directions parallel 
with the slow-scan direction of the probe. We 
infer, therefore, that we may have a significant 
component of accelerating drift, asymmetric tip 
instability in current or position, charging of the 
edge of the objective aperture or acoustic inter- 
ference. We are presently attempting to discrimi- 
nate these various components of error and elimi- 
nate them systematically. Indeed, it can be ar- 
gued that the main strength of this method is that 
we can measure directly the self-consistency of 
the data in order to improve upon the instrumen- 
tation. Many other reconstruction methods do 
not allow for such tests, and may therefore some- 
times give fallacious results. There is consider- 
able room for improvement in our instrumenta- 
tion, particularly in the water-cooling and air- 
conditioning of the microscope (which seriously 
affect drift), and in our recording medium (a 
TV-rate CCD camera>, and so we interpret these 
first tests as extremely promising. 

Fig. 8. A plot of G(r’, p’) as a function of r’ for a data-set 

recorded using the standard ((Y = 8 mrad) objective aperture 

( 1 p’ I = 1.2~1). (a) Magnitude. (b) Phase. The greyscale is in 

the range - rr to + rr, so for a phase change across r the 

intensity of the plot changes abruptly. Note that correspond- 

ing points in the two parts of the aperture overlap function 

have a phase difference of r, since the specimen is weak 
phase; elsewhere the phase has random values. The phase 

change across each aperture overlap function can be ex- 
plained by the effects of spherical aberration in the objective 

lens. 
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We believe that this method may offer the 
most robust route to sub-%rgstrom-resolution 
electron microscopy. By processing only the 
bright-field (zero-order) disc of the microdiffrac- 
tion plane, resolution can be doubled beyond the 
conventional information limit. For a strongly 
scattering specimen, the full Wigner distribution 
deconvolution allows, in theory, for the phasing 
of much higher-order diffracted amplitudes be- 
yond the information limit, as has been demon- 
strated experimentally on the optical bench [4,5]. 
For strong, thick specimens, where appreciable 
Fresnel spreading occurs between different layers 
of the specimen, the multiplicative Fourier-optic 
description of the specimen and probe interac- 
tion (which leads to eq. (3)) breaks down. Under 
these circumstances, the addition of a holo- 
graphic reference [17], or processing conventional 
images as a function of defocus [18] may be a 
better way to measure the phase of the exit 
wavefield. However, we note that given the con- 
straint that the specimen is crystalline, the p’ = 0 
plane through G(r’, p’), which is the integrated 
intensity in the microdiffraction plane from all 
probe positions and is equivalent to the conven- 
tional incoherent CBED pattern, should yield a 
unique solution of the complex scattering factors 
[191. The information lying at p’ # 0, which is 
equivalent to the coherent interference effects 
observed in CBED patterns (see, for example, 
ref. [201), may therefore be processed using this 
method in order to remove the complications of 
the transfer of the objective lens, and thus create 
a much richer phase-sensitive data set, though 
one that will still have to be processed taking full 
account of dynamical scattering effects. 
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